Поступила 21/11/2023

DOI: 10.35556/idr-2024-2(107)18-27

For English press here

Антибактериальные криогелевые материалы для ран. Часть 2
https://doi.org/10.35556/idr-2024-2(107)0-00
Федорова К.О.1, аспирант, ORCID ID: 0009-0007-7466-7958
Шайхалиев А.И.1, д.м.н., профессор
Краснов М.С.2, к.б.н., старший научный сотрудник
Лозинский В.И.2, д.х.н., профессор
Исагаджиев А.М.1, аспирант
1Кафедра челюстно-лицевой хирургии, ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России
2ФГБУН Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Для переписки:
E-mail address: romashka2812@yandex.ru

Резюме
Криогелевые материалы находят широкое применение в биотехнологии и регенеративной медицине. Они обладают уникальными свойствами, отличающими их от других перевязочных материалов. В настоящее время в связи с растущим к ним интересом используются различные материалы и их комбинации для изготовления криогелевых повязок для ран. Целью настоящего обзора было собрать наиболее полный перечень криогелевых материалов с антимикробными свойствами для ран. Были рассмотрены природные и синтетические полимеры, которые использовались при их синтезе, а также антибактериальные агенты, примененные авторами для их создания. Показаны плюсы и минусы используемых материалов для создания повязок для ран, в том числе ран челюстно-лицевой области, перспективы их использования в будущем.

Ключевые слова: материалы для ран, криогели, биоматериалы, антибактериальные повязки для ран.

Для цитирования: Федорова К.О., Шайхалиев А.И., Краснов М.С., Лозинский В.И., Исагаджиев А.М. Антибактериальные криогелевые материалы для ран. Часть 2. Стоматология для всех. 2024; №2(107): 18-27. doi: 10.35556/idr-2024-2(107)18-27

Литература/References
1. Deng L., Zhang X., Li Y., Que F., Kang X., Liu Y., et al. Characterization of gelatin / zein nanofibers by hybrid electrospinning. Food Hydrocolloids. 2018; 75: 72−80. doi: 10.1016/j.foodhyd.2017.09.011
2. Wu Y., Wang L., Guo B., Ma P.X. Interwoven aligned conductive nanofiber yarn/hydrogel compositescaffolds for engineered 3D cardiac anisotropy. ACS Nano. 2017; 11, 6: 5646−5659. doi: 10.1021/acsnano.7b01062
3. Zhang Z., Kuang G., Zong S., Liu S., Xiao H., Chen X., et al. Sandwich-like fibers / sponge composite combining chemotherapy and hemostasis for efficient postoperative prevention of tumor recurrence and metastasis. Adv. Mater. 2018; 30: 1803217.
4. Chen Q., Yang H., Li Y., Wang X., Wei L., Du Y. Effects of Yak skin gelatin on platelet activation. Food Funct. 2019; 10: 3379−3385.
5. Zhao X., Liang Y., Huang Y., He J., Han Y., Guo B. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 2020; 30: 1910748.
6. Kim S.E., Heo D.N., Lee J.B., Kim J.R., Park S.H., Jeon S.H., et al. Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed. Mater. 2009; 4: 044106.
7. Dong Y., Sigen A., Rodrigues M., Li X., Kwon S.H., Kosaric N., et al. Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing. Adv. Funct. Mater. 2017; 27: 1606619. doi: 10.1002/adfm.201606619
8. Huang Y., Zhao X., Zhang Z., Liang Y., Yin Z., Chen B., et al. Degradable gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible hemorrhage and simultaneously improving wound healing. Chem Mater. 2020; 32(15): 6595–6610. doi: 10.1021/acs.chemmater.0c02030
9. Huang Y., Bai L., Yang Y., Yin Z., Guo B. Biodegradable gelatin/silver nanoparticle composite cryogel with excellent antibacterial and antibiofilm activity and hemostasis for Pseudomonas aeruginosa-infected burn wound healing. Journal of Colloid and Interface Science. 2022; 608: 2278–2289. doi: 10.1016/j.jcis.2021.10.131
10. Kumar R., Butreddy A., Kommineni N., Reddy P.G., Bunekar N., Sarkar C., et al. Lignin: Drug/Gene Delivery and Tissue Engineering Applications. Int J Nanomedicine. 2021 Mar 26; 16: 2419–2441. PMID: 33814908. PMCID: PMC8009556. doi: 10.2147/IJN.S303462
11. Abudula T., Thibault C., Taofeek A., Sidi A.B., Adnan M. Injectable lignin-co-gelatin cryogels with antioxidant and antibacterial properties for biomedical applications. Biomacromol. 2021; 22: 4110–4121. doi: 10.1021/acs.biomac.1c00575
12. Bigliardi P.L., Alsagoff S.A.L., El-Kafrawi H.Y., Pyon J.K., Wa C.T.C., Villa M.A. Povidone iodine in wound healing: A review of current concepts and practices. Int J Surg. 2017 Aug; 44: 260–268. PMID: 28648795. doi: 10.1016/j.ijsu.2017.06.073
13. Priya S.G., Gupta A., Jain E., et al. Bilayer cryogel wound dressing and skin regeneration grafts for the treatment of acute skin wounds. ACS Appl Mater Interfaces. 2016; 8: 15145–15159. doi: 10.1021/acsami.6b04711
14. Abdelgawad A.M., El-Naggar M.E., Elsherbiny D.A., Ali S., Abdel-Aziz M.S., Abdel-Monem Y.K. Antibacterial carrageenan/cellulose nanocrystal system loaded with silver nanoparticles, prepared via solid-state technique, Journal of Environmental Chemical Engineering. 2020; 8, 5: 104276. doi: 10.1016/j.jece.2020.104276
15. Snetkov P., Zakharova K., Morozkina S., Olekhnovich R., Uspenskaya M. Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer. Polymers (Basel). 2020 Aug 11; 12(8): 1800. PMID: 32796708. PMCID: PMC7464276. doi: 10.3390/polym12081800
16. Andrabi S.M., Singh P., Majumder S., Kumar A. A compositionally synergistic approach for the development of a multifunctional bilayer scaffold with antibacterial property for infected and chronic wounds. Chemical Engineering Journal. 2021; 423: 130219. doi: 10.1016/j.cej.2021.130219
17. Sun W., Gregory D.A., Tomeh M.A., Zhao X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int J Mol Sci. 2021 Feb 2; 22(3): 1499. doi: 10.3390/ijms22031499
18. Liu T., Zhang M.K., Liu W.L., Zeng X., Song X.L., Yang X.Q., et al. Metal Ion/Tannic Acid Assembly as a Versatile Photothermal Platform in Engineering Multimodal Nanotheranostics for Advanced Applications. ACS Nano. 2018, 12, 3917–3927. doi: 10.1021/acsnano.8b01456
19. Yu Y., Li P., Zhu C., et al. Multifunctional and recyclable photothermally responsive cryogels as efficient platforms for wound healing. Adv Funct Mater. 2019; 29: 1–11. doi: 10.1002/adfm.201904402
20. Han L., Li P., Tang P., Wang X., et al. Mussel-inspired cryogels for promoting wound regeneration through photobiostimulation, modulating inflammatory responses and suppressing bacterial invasion. Nanoscale. 2019; 11: 15846–15861. doi: 10.1039/c9nr03095f
21. Zhu Y., Liu H., Qin S., Yang C., Lv Q., Wang Z., et al. Antibacterial Sericin Cryogels Promote Hemostasis by Facilitating the Activation of Coagulation Pathway and Platelets. Adv Healthc Mater. 2022 Jun; 11(11): e2102717. PMID: 35132817. doi: 10.1002/adhm.202102717
22. Ji Y., Zhang X., Chen Z., Xiao Y., Li S., Gu J., et al. Silk sericin enrichment through electrodeposition and carbonous materials for the removal of methylene blue from aqueous solution. Int. J. Mol. Sci. 2022; 23: 1668. doi: 10.3390/ijms23031668
23. Wang W.H., Lin W.S., Shih C.H., Chen C.Y., Kuo S.H., Li W.L., et al. Functionality of silk cocoon (Bombyx mori L.) sericin extracts obtained through high-temperature hydrothermal method. Materials. 2021; 14: 5314. doi: 10.3390/ma14185314
24. Kim J.Y., Kim S.G., Garagiola U. Relevant Properties and Potential Applications of Sericin in Bone Regeneration. Curr Issues Mol Biol. 2023 Aug 15; 45(8): 6728–6742. PMID: 37623245. PMCID: PMC10453912. doi: 10.3390/cimb45080426
25. Shaw J., Smith S. Amino-acids of silk sericin. Nature. 1951; 168: 745–745. doi: 10.1038/168745a0
26. Cao T.T., Zhang Y.Q. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater Sci Eng C. 2016; 61: 940–952. doi: 10.1016/j.msec.2015.12.082
27. Kunz R.I., Brancalhao R.M.C., Ribeiro L.D.C., Natali M.R.M. Silkworm sericin: properties and biomedical applications. Biomed Res Int. 2016. doi: 10.1155/2016/8175701
28. Aramwit P., Siritientong T., Srichana T. Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Manag Res. 2012; 30: 217–224. doi: 10.1177/0734242X11404733
29. Das G., Shin H.S., Campos E.V.R., Fraceto L.F., Del Pilar Rodriguez-Torres M., Mariano K.C.F., et al. Sericin based nanoformulations: a comprehensive review on molecular mechanisms of interaction with organisms to biological applications. J Nanobiotechnology. 2021 Jan 22; 19(1): 30. PMID: 33482828. PMCID: PMC7821414. doi: 10.1186/s12951-021-00774-y
30. Stern R., Asari A.A., Sugahara K.N. Hyaluronan fragments: An information-rich system. Eur. J. Cell Biol. 2006; 85: 699–715. doi: 10.1016/j.ejcb.2006.05.009
31. Wang W.C., Liang Y., Huang Y., Li M., Guo B. Porous photothermal antibacterial antioxidant dual–crosslinked cryogel based on hyaluronic acid/ polydopamine for non-compressible hemostasis and infectious wound repair. J Mater Sci Technol. 2022; 121: 207–219. doi: 10.1016/j.jmst.2021.12.054
32. Wei L., Tan J., Li L., Wang H., Liu S., Chen J., et al. Chitosan/Alginate Hydrogel Dressing Loaded FGF/VE-Cadherin to Accelerate Full-Thickness Skin Regeneration and More Normal Skin Repairs. Int J Mol Sci. 2022 Jan 23; 23(3): 1249. PMID: 35163172. PMCID: PMC8835731. doi: 10.3390/ijms23031249
33. Wang F., Sun J., Shi H., Zhou J., Ma X., Song X., et al. Multifunctionalized alginate/polydopamine cryogel for hemostasis, antibacteria and promotion of wound healing. International Journal of Biological Macromolecules. 2023; 224: 1373–1381. doi: 10.1016/j.ijbiomac.2022.10.223
34. Wang L., Wang W., Liao J., Wang F., Jiang J., Cao C., et al. Novel bilayer wound dressing composed of SIS membrane with SIS cryogel enhanced wound healing process. Mater Sci Eng C Mater Biol Appl. 2018 Apr 1; 85: 162–169. PMID: 29407144. doi: 10.1016/j.msec.2017.11.024
35. Fu Y., Ding Y., Zhang L., Zhang Y., Liu J., Yu P. Poly ethylene glycol (PEG)-Related controllable and sustainable antidiabetic drug delivery systems. Eur J Med Chem. 2021 May 5; 217: 113372. PMID: 33744689. doi: 10.1016/j.ejmech.2021.113372
36. Ghosh S., Chatterjee K. Poly(Ethylene Glycol) Functionalized Graphene Oxide in Tissue Engineering: A Review on Recent Advances. Int J Nanomedicine. 2020 Aug 12; 15: 5991–6006. PMID: 33192060. PMCID: PMC76567. doi: 10.2147/IJN.S249717.
37. Rosselle L., Cantelmo A.R., Barras A., Skandrani N., Pastore M., Aydin D., Chambre L., et al. An ‘on-demand’ photothermal antibiotic release cryogel patch: evaluation of efficacy on an ex vivo model for skin wound infection. Biomater Sci. 2020; 8: 5911–5919. doi: 10.1039/D0BM01535K
38. Isoglu A.I., Demirkan C., Seker M.G., Tuzlakoglu K., Dincer Isoglu S. Antibacterial bilayered skin patches made of hpma and quaternary poly (4-vinyl pyridine). Fibers Polym. 2018; 19: 2229–2236. doi: 10.1007/s12221-018-8480-9
39. Gottrup F. Oxygen in wound healing and infection. World J. Surg. 2004; 28: 312–5. doi: 10.1007/s00268-003-7398-5
40. Rodriguez P.G., Felix F.N., Woodley D.T., Shim E.K. The Role of Oxygen in 12 Wound Healing: A Review of the Literature. Dermatologic Surg. 2008; 34, 13: 1159–1169. doi: 10.1111/j.1524-4725.2008.34254.x
41. Shiekh P.A., Singh A., Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxO band alleviate diabetic and infectious wound healing. Biomaterials. 2020; 249: 120020. doi: 10.1016/j.biomaterials.2020.120020
42. Munoz-Bonilla A., Lopez D., Fernandez-Garcia M. Providing Antibacterial Activity to Poly(2-Hydroxy Ethyl Methacrylate) by Copolymerization with a Methacrylic Thiazolium Derivative. Int J Mol Sci. 2018 Dec 19; 19(12): 4120. PMID: 30572587. PMCID: PMC6320901. doi: 10.3390/ijms19124120
43. Sahiner N., Sagbas S., Aktas N. Preparation and characterization of monodisperse, mesoporous natural poly(Tannic Acid)-Silica nanoparticle composites with antioxidant properties. Micropor. Mesopor. Mater. 2016; 226: 316–324. doi: 10.1016/j.micromeso.2016.02.012
44. Sahiner N., Sagbas S., Sahiner M., Silan C. P(TA) macro-, micro-, nanoparticle-embedded super porous p(HEMA) cryogels as wound dressing material. Mater Sci Eng. 2016; 70: 317–326. doi: 10.1016/j.msec.2016.09.025
45. Nawaz N., Wen S., Wang F., Nawaz S., Raza J., Iftikhar M., Usman M. Lysozyme and Its Application as Antibacterial Agent in Food Industry. Molecules. 2022 Sep 24; 27(19): 6305. PMID: 36234848. PMCID: PMC9572377. doi: 10.3390/molecules27196305
46. Diken Gür S., Bakhshpour M., Bereli N., Denizli A. Antibacterial effect against both gram-positive and gram-negative bacteria via lysozyme imprinted cryogel membranes. J Biomater Sci Polym Ed. 2021; 32: 1024–1039. doi: 10.1080/09205063.2021.1892472
47. Alven S., Aderibigbe B.A. Fabrication of Hybrid Nanofibers from Biopolymers and Poly (Vinyl Alcohol)/Poly (ε-Caprolactone) for Wound Dressing Applications. Polymers (Basel). 2021 Jun 26; 13(13): 2104. PMID: 34206747. PMCID: PMC8271691. doi: 10.3390/polym13132104
48. Mucha A., Kafarski P., Berlicki L. Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry. J. Med. Chem. 2011; 54: 5955–5980. doi: 10.1021/jm200587f
49. Naydenova E.D., Todorov P.T., Troev K.D. Recent synthesis of aminophosphonic acids as potential biological importance. Amino Acids. 2010 Jan; 38(1): 23–30. PMID: 19229586. doi: 10.1007/s00726-009-0254-7
50. Elsherbiny D.A., Abdelgawad A.M., Hemdan B.A., Montaser A.S., El-Sayed I.E.T., Jockenhoevelbg S., et al. Self-crosslinked polyvinyl alcohol/cellulose nanofibril cryogels loaded with synthesized aminophosphonates as antimicrobial wound dressings. J. Mater. Chem. B. 2023; 11: 7144–7159. doi: 10.1039/D3TB00926B
51. Абаев Ю.К. Биология заживления острой и хронической раны. Мед. новости. 2003; №6: 3–10.
Abaev Yu.K. Biology of acute and chronic wound healing. Mednews. 2003; №6: 3–10 (in Russian).
52. Fallacara A., Baldini E., Manfredini S., Vertuani S. Hyaluronic Acid in the Third Millennium. Polymers. 2018; 10: 701. doi: 10.3390/polym10070701
53. De Oliveira J.D., Carvalho L.S., Gomes A.M., Queiroz L.R., Magalhaes B.S., Parachin N.S. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb. Cell Fact. 2016; 15: 119. doi: 10.1186/s12934-016-0517
54. Alven S., Aderibigbe B.A. Chitosan and Cellulose-Based Hydrogels for Wound Management. Int J Mol Sci. 2020 Dec 18; 21(24): 9656. PMID: 33352826. PMCID: PMC7767230. doi: 10.3390/ijms21249656
55. Fernandes I.A.A., Pedro A.C., Ribeiro V.R., Bortolini D.G., Ozaki M.S.C., Maciel G.M., et al. Bacterial cellulose: From production optimization to new applications. Int J Biol Macromol. 2020 Dec 1; 164: 2598–2611. PMID: 32750475. doi: 10.1016/j.ijbiomac.2020.07.255
56. Оболенский В.Н. Хроническая рана: обзор современных методов лечения. РМЖ. 2013; 5: 282. PMC ID: PMC8747056.
Obolensky V.N. Chronic wound: a review of modern methods of treatment. RMJ. 2013; 5: 282. PMC ID: PMC8747056 (in Russian).
57. Liu S., Qamar A.S., Qamar M., Basharat K., Bilal M. Review: Engineered nanocellulose-based hydrogels for smart drug delivery applications. Int. J. Biol. Macromol. 2021; 181: 275–290. doi: 10.1016/j.ijbiomac.2021.03.147
58. Elangwe C.N., Morozkina S.N., Olekhnovich R.O., Krasichkov A., Polyakova V.O., Uspenskaya M.V. A Review on Chitosan and Cellulose Hydrogels for Wound Dressings. Polymers (Basel). 2022 Nov 27; 14(23): 5163. PMID: 36501559. PMCID: PMC9741326. doi: 10.3390/polym14235163
59. Akin B, Ozmen M.M. Antimicrobial cryogel dressings towards effective wound healing. Prog Biomater. 2022 Dec; 11(4): 331–346. PMID: 36123436. PMCID: PMC9626728. doi: 10.1007/s40204-022-00202-w
60. Ho T.C., Chang C.C., Chan H.P., Chung T.W., Shu C.W., Chuang K.P., et al. Hydrogels: Properties and Applications in Biomedicine. Molecules. 2022 May 2; 27(9): 2902. PMID: 35566251. PMCID: PMC9104731. doi: 10.3390/molecules27092902
61.Sundaramurthi D., Krishnan U., Sethuraman S. Electrospun nanofibers as scaffolds for skin tissue engineering. Polym Rev. 2014; 54: 348–376. doi: 10.1080/15583724.2014.881374
62. Павленок А.В. и др. Получение и свойства биоразлагаемых композиционных материалов на основе поливинилового спирта и крахмала. Вестник ГГТУ имени П. О. Сухого: научно-практический журнал. 2018; №1: 38–46.
Pavlenok A.V. et al. Preparation and properties of biodegradable composite materials based on polyvinyl alcohol and starch. Bulletin of the Sukhoi State Technical Technical University: a scientific and practical journal. 2018; №1: 38–46 (in Russian).
63. Gobi R., Ravichandiran P., Babu R.S., Yoo D.J. Biopolymer and Synthetic Polymer-Based Nanocomposites in Wound Dressing Applications: A Review. Polymers (Basel). 2021 Jun 13; 13(12): 1962. PMID: 34199209. PMCID: PMC8232021. doi: 10.3390/polym13121962
64. Phan T.T.V., Huynh T.C., Oh J. Photothermal Responsive Porous Membrane for Treatment of Infected Wound. Polymers (Basel). 2019 Oct 14; 11(10): 1679. PMID: 31615133. PMCID: PMC6835234. doi: 10.3390/polym11101679
65. Wang Y., Lv Q., Chen Y., Xu L., Feng M., Xiong Z., et al. Bilayer hydrogel dressing with lysozyme-enhanced photothermal therapy for biofilm eradication and accelerated chronic wound repair. Acta Pharm Sin B. 2023 Jan; 13(1): 284–297. PMID: 36811095. PMCID: PMC9939289. doi: 10.1016/j.apsb.2022.03.024
66. Xin Zhao, Yongping Liang, Baolin Guo, Zhanhai Yin, Dun Zhu, Yong Han, Injectable dry cryogels with excellent blood-sucking expansion and blood clotting to cease hemorrhage for lethal deep-wounds, coagulopathy and tissue regeneration. Chemical Engineering Journal, 2021; 403: 126329. doi: 10.1016/j.cej.2020.126329
67. He X., Obeng E., Sun X., Kwon N., Shen J., Yoon J. Polydopamine, harness of the antibacterial potentials – A review. Mater Today Bio. 2022 Jun 16; 15: 100329. PMID: 35757029. PMCID: PMC9218838. doi: 10.1016/j.mtbio.2022.100329
68.Shen H., You J., Zhang G., et al. Cooperative, nanoparticle-enabled thermal therapy of breast cancer. Adv Healthc Mater. 2012; 1(1): 84–89.
69. Kennedy L.C., Bickford L.R., Lewinski N.A., Coughlin A.J., Hu Y., Day E.S., et al. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small. 2011 Jan 17; 7(2): 169–83. PMID: 21213377. doi: 10.1002/smll.201000134
70. Wolfram J., Zhu M., Yang Y., Shen J., Gentile E., Paolino D., et al. Safety of Nanoparticles in Medicine. Curr Drug Targets. 2015; 16(14): 1671–81. PMID: 26601723. PMCID: PMC4964712. doi: 10.2174/1389450115666140804124808
71. Zhao Y., Xing G., Chai Z. Nanotoxicology: Are carbon nanotubes safe? Nat Nanotechnol. 2008 Apr; 3(4): 191–2. PMID: 18654501. doi: 10.1038/nnano.2008.77
72. Liu Y., Zhao Y., Sun B., Chen C. Understanding the toxicity of carbon nanotubes. Acc Chem Res. 2013 Mar 19; 46(3): 702–13. PMID: 22999420. doi: 10.1021/ar300028m
73. Jia G., Wang H., Yan L., Wang X., Pei R., Yan T., et al. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol. 2005 Mar 1; 39(5): 1378–83. PMID: 15787380. doi: 10.1021/es048729l
74. Donaldson K., Murphy F.A., Duffin R., Poland C.A. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 2010 Mar 22; 7: 5. PMID: 20307263. PMCID: PMC2857820. doi: 10.1186/1743-8977-7-5
75. Poland C.A., Duffin R., Kinloch I., Maynard A., Wallace W.A., Seaton A., et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008 Jul; 3(7): 423–8. PMID: 18654567. doi: 10.1038/nnano.2008.111
76. Johnston H.J., Hutchison G.R., Christensen F.M., Peters S., Hankin S., Aschberger K., et al. critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics. Nanotoxicology. 2010 Jun; 4(2): 207–46. PMID: 20795897. doi: 10.3109/17435390903569639
77. Pan Y., Neuss S., Leifert A., Fischler M., Wen F., Simon U., et al. Size-dependent cytotoxicity of gold nanoparticles. Small. 2007 Nov; 3(11): 1941–9. PMID: 17963284. doi: 10.1002/smll.200700378
78. Zhu M.T., Wang Y., Feng W.Y., et al. Oxidative stress and apoptosis induced by iron oxide nanoparticles in cultured human umbilical endothelial cells. Journal of nanoscience and nanotechnology. 2010; 10(12): 8584–8590.
79. Barreto R., Barrois B., Lambert J., Malhotra-Kumar S., Santos-Fernandes V., Monstrey S. Addressing the challenges in antisepsis: focus on povidone iodine. International Journal of Antimicrobial Agents. 2020; 56, 3: 106064. doi: 10.1016/j.ijantimicag.2020.106064
80. Park J.W., Hwang S.R., Yoon I.S. Advanced Growth Factor Delivery Systems in Wound Management and Skin Regeneration. Molecules. 2017 Jul 27; 22(8): 1259. PMID: 28749427. PMCID: PMC6152378. doi: 10.3390/molecules22081259
81. Zhou D., Yang T., Xing M., Luo G. Preparation of a balsa-lysozyme eco-friendly dressing and its effect on wound healing. RSC Adv. 2018 Apr 10; 8(24): 13493–13502. PMID: 35542547. PMCID: PMC9079789. doi: 10.1039/c8ra02629g

Яндекс.Метрика