Received 05.08.2023
DOI: 10.35556/idr-2023-3(104)10-14
Optical methods for caries detection and determination of caries removal end points.
1Turkina A.Yu., ORCID ID: 0000-0003-2852-0051, 1Kochmareva A.S., ORCID ID: 0000-0003-3362-4111, 1Nikolashvili N.I., ORCID ID: 0000-0001-8349-9991, 1Vlasova N.N., ORCID ID: 0000-0003-3665-1916, 1Samusenkov V.O., ORCID ID: 0000-0001-6266-0555, 2Shelemetieva G.N., ORCID ID: 0000-0003-2746-2443, 1Monakhov I.S., ORCID ID: 0009-0000-3040-7029
1I.M. Sechenov First Moscow State Medical Universi-ty (Sechenov University), E.V. Borovsky Institute of Dentistry, Department of Therapeutic Dentistry
119991, Russia, Moscow, Trubetskaya St., 8, Bld. 2
2Private dental practice
675009, Russia, Blagoveshchensk, Kuznechnaya St., 65
E-mail address:

The modern standard in dentistry requires minimally invasive treatment, as it allows preserving the teeth vitality. The purpose of this study was to evaluate the possibility of laser spectroscopy and quantitative light-induced fluorescence to determine the caries removal end point. Materials and methods: the study was conducted on ten third molars extracted for medical reasons. Measurements were carried out at different stages of preparation of the carious cavity using laser spectroscopy (DIAGNOdent-pen) and quantitative light-induced fluorescence (Qraypen). Results: both methods were effective in differentiating affected and infected dentin. The following indicators of carious tissues were obtained. DIAGNOdent-pen: carious enamel — 28.8±8; soft dentin — 68.3±14; firm dentin (pigmented and non-pigmented) — 23.7±8 and 9.2±3 respectively; healthy dentin (hard) — 4.7±3. For Qraypen: carious enamel — ΔF=25.7±9, ΔR=26; soft dentin — ΔF=26.6±9 ΔR=28.75; firm dentin — ΔF=18.4±9, ΔR=0—10 (no difference between pigmented and non-pigmented was observed); healthy dentin (hard) — ΔF=13.7±8, ΔR=0. Conclusion: methods of laser spectroscopy and quantitative light-induced fluorescence can be used for diagnostics and to assess the quality of preparation of carious cavities, effectively detect fissure caries and selectively remove infected dentin.

Keywords: dentine caries, minimally-invasive treatment, laser spectroscopy, quantitative light-induced fluorescence.

For citation: Turkina A.Yu., Kochmareva A.S., Nikolashvili N.I., Vlasova N.N., Samusenkov V.O., Shelemetieva G.N., Monakhov I.S. Optical methods for caries detection and determination of caries removal end points. Stomatology for All / Int. Dental Review. 2023; no.3(104): 10-14 (In Russian). doi: 10.35556/idr-2023-3(104)10-14
1. Giacaman R.A., Muñoz-Sandoval C., Neuhaus K.W., Fontana M., Chalas R. Evidence-based strategies for the minimally invasive treatment of carious lesions: Review of the literature. Adv Clin Exp Med. 2018; 27(7): 1009—1016. doi:10.17219/acem/77022
2. Fusayama T. Two layers of carious dentin; diagnosis and treatment. Oper Dent. 1979; 4(2): 63—70.
3. Schwendicke F., Frencken J.E., Bjørndal L., Maltz M., Manton D.J., Ricketts D., et al. Managing Carious Lesions: Consensus Recommendations on Carious Tissue Removal. Adv Dent Res. 2016; 28(2): 58—67. doi: 10.1177/0022034516639271. PMID: 27099358
4. Akbari M., Ahrari F., Jafari M. A comparative evaluation of DIAGNOdent and caries detector dye in detection of residual caries in prepared cavities. J Contemp Dent Pract. 2012; 13(4): 515—520. doi: 10.5005/jp-journals-10024-1178. PMID: 23151702
5. Tao Y-C, Fried D. Near-infrared image-guided laser ablation of dental decay. J Biomed Opt. 2009; 14(5): 054—045. doi:10.1117/1.3253390
6. Ganter P., Al-Ahmad A., Wrbas K.T., Hellwig E., Altenburger M.J. The use of computer-assisted FACE for minimal-invasive caries excavation. Clin Oral Investig. 2014; 18(3): 745—751. doi:10.1007/s00784-013-1022-3
7. Yonemoto K., Eguro T., Maeda T., Tanaka H. Application of DIAGNOdent® as a guide for removing carious dentin with Er:YAG laser. J Dent. 2006; 34(4): 269—276. doi:10.1016/j.jdent.2005.07.001
8. Krause F., Braun A., Eberhard J., Jepsen S. Laser fluorescence measurements compared to electrical resistance of residual dentine in excavated cavities in vivo. Caries Res. 2007; 41(2): 135—140. doi: 10.1159/000098047. PMID: 17284915
9. Lennon A.M., Buchalla W., Switalski L., Stookey G.K. Residual caries detection using visible fluorescence. Caries Res. 2002; 36(5): 315—319. doi: 10.1159/000065956
10. Lee J.W., Lee E.S., Kim B.I. Optical diagnosis of dentin caries lesions using quantitative light-induced fluorescence technology. Photodiagnosis Photodyn Ther. 2018; 23: 68—70. doi: 10.1016/j.pdpdt.2018.05.011
11. Lussi A., Imwinkelried S., Pitts N., Longbottom C., Reich E. Performance and reproducibility of a laser fluorescence system for detection of occlusal caries in vitro. Caries Res. 1999; 33(4): 261—266. doi: 10.1159/000016527, PMID: 10343088
12. Park S.W., Kim S.K., Lee H.S., Lee E.S., de Josselin de Jong E., Kim B.I. Comparison of fluorescence parameters between three generations of QLF devices for detecting enamel caries in vitro and on smooth surfaces. Photodiagnosis Photodyn Ther. 2019; 25: 142—147. doi: 10.1016/j.pdpdt.2018.11.019, PMID: 30508664
13. Neves A.A., Coutinho E., De Munck J., Lambrechts P., Van Meerbeek B. Does DIAGNOdent provide a reliable caries-removal endpoint? J Dent. 2011; 39(5): 351—360. doi: 10.1016/j.jdent.2011.02.005, PMID: 21334416
14. Lee J.W., Lee E.S., Kim B.I. Can red fluorescence be useful in diagnostic decision making of residual dentin caries? Photodiagnosis Photodyn Ther. 2019; 26: 43—44. doi: 10.1016/j.pdpdt.2019.02.016, PMID: 30797117
15. Ricketts D., Innes N., Schwendicke F. Selective Removal of Carious Tissue. Monogr Oral Sci. 2018; 27: 82—91. doi:10.1159/000487838