Received 13.06.2022
DOI: 10.35556/idr-2022-4(101)28-33
Experimental substantiation for the safety of the use of laser radiation with a wavelength of 445±40 nm in dental practice

Romanenko N.V., htpps://, Tarasenko S.V.,, Suvorov A.Y., htpps://, Derevyankin A.A., htpps://, Djidjavadze S.V., htpps://, Bondar I.M., htpps://, Skulbeda D.V., htpps://, Zhornik M.A., htpps://
I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
Russia, 119048, Moscow, Trubetskaya St., 8, bld. 2

E-mail address:

The aim of the study was to determine the temperature parameters when exposed to the area of the attached keratinized gum by laser irradiation and to compile clinical recommendations based on the data obtained. The study was conducted on laboratory animals (mature male rats of the Wistar breed) in accordance with Russian and international rules for conducting preclinical studies. The temperature of the keratinized gum was determined by contact method using low level laser therapy (LLLT) at a laser irradiation wavelength of 445±40 nm, a power of 0.5 W with a distance from the tip of the light guide to the gum surface of 2.5—3 mm (group I) and 4.5—5 mm (group II). As a result of the study, it was found that when exposed to low level laser irradiation (LLLI) with a wavelength of 445±40 nm and a distance of 4.5—5 mm from the tip of the light guide to the gum surface, the temperature increase of the gum tissues on average is 8.37±0.296°C, which does not exceed the threshold temperature index. Low level laser therapy with these parameters can be recommended for use in dental practice after conducting appropriate clinical studies.

Keywords: low-intensity laser radiation, laser radiation with a wavelength of 445±40 nm, blue laser, temperature indicators.

For citation: Romanenko N.V., Tarasenko S.V., Suvorov A.Y., Derevyankin A.A., Djidjavadze S.V., Bondar I.M., Skulbeda D.V., Zhornik M.A. Experimental substantiation for the safety of the use of laser radiation with a wavelength of 445±40 nm in dental practice. Stomatology for All / Int. Dental Review. 2022, no.4(101): 28-33 (In Russian). doi: 10.35556/idr-2022-4(101)28-33

1. Karoussis I.K., Kyriakidou K., Psarros C., Koutsilieris M., Vrotsos J.A. Effects and Action Mechanism of Low Level Laser Therapy (LLLT): Applications in Periodontology. Dentistry. 2018, 8, 9: 1000514. doi: 10.4172/2161-1122.1000514
2. Manjunath Sh., Singla D., Singh R. Clinical and microbiological evaluation of the synergistic effects of diode laser with nonsurgical periodontal therapy: A randomized clinical trial. Journal of Indian Society Periodontology. 2020, 24, 2: 145—149. doi: 10.4103/jisp.jisp_101_19
3. Sakurai Y., Yamaguchi M., Abiko Y. Inhibitory Effect of Low Level Laser Irradiation on LSP-Stimulated Prostaglandin E2 Production and Cyclooxygenase-2 in Human Gingival Fibroblasts. European Journal of Oral Sciences. 2000, 108(1): 29—34. doi: 10.1034/j.1600-0722.2000.00783.x
4. Vinnichenko A.V., Gilyazetdinova Yu.A., Gilyazetdinov D.F. Treatment of periodontitis using magneto-laser therapy. Stomatology for All / International Dental Review. 2003, №4(25): 14—19 (In Russian).
5. Zhizhina N.V., Prokhonchukov A.A. On the 55th anniversary of the use of laser systems in dentistry. Stomatology for All / International Dental Review. 2010, №4(53): 42—45 (In Russian).
6. Moskvin S.V. Mechanisms of therapeutic effect of low-intensity laser radiation (LILI). Collection of scientific papers “Modern laser medicine. Theory and practice”. Moscow, 2007: 7—15 (In Russian).
7. Convissar R.А. Principles and Practice of Laser Dentistry: Second Edition. Mosby, 2015, 328 p.
8. Patricia M. Freitas, Alyne Simoes. Lasers in Dentistry: Guide for Clinical Practice. Wiley-Blackwell, 2015, 376 p.
9. Moulton P.F., Cederberg J.G., Stevens K.T., Foundos G., Koselja M., Preclikova J. Optimized InGaN-diode pumping of Ti:sapphire crystals. Optical Materials Express. 2019, 9(5): 2131—2346. doi: 10.1364/OME.9.002131
10. Reichelt J., Winter J., Meister J., Frentzen M., Kraus D. A Novel Blue Light Laser System for Surgical Applications in Dentistry: Evaluation of Specific Laser-Tissue Interactions in Monolayer Cultures. Clinical Oral Investigations. 2017, no.21: 985—994. doi: 10.1007/s00784-016-1864-6
11. Sterczala B., Grzech-Lesniak K., Michel O., Trzeciakowski W., Dominiak M., Jurczyszyn K. Assessment of Human Gingival Fibroblast Proliferation after Laser Stimulation In Vitro Using Different Laser Types and Wavelengths (1064, 980, 635, 450 and 405 nm) — Preliminary Report. Journal Personalized Medicine. 2021, 4, 11(2): 98. doi: 10.3390/jpm11020098
12. Etemadi A., Taghavi N.S., Hodjat M., Kosarieh E., Hakimiha N. Assessment of the Photobiomodulation Effect of a Blue Diode Laser on the Proliferation and Migration of Cultured Human Gingival Fibroblast Cells: A Preliminary In Vitro Study. Journal of Lasers in Medical Sciences. 2020, 11(4): 491—496. doi: 10.34172/jlms.2020.77
13. Kushibiki T., Tajiri T., Ninomiya Y., Awazu K. Chondrogenic mRNA expression in prechondrogenic cells after blue laser irradiation. Journal of Photochemistry and Photobiology B: Biology. 2010, 98: 211—215. doi: 10.1016/j.jphotobiol.2010.01.008
14. Niemz M.H. Laser-tissue interactions: fundamentals and applications: 3rd enlarged edition. Berlin: Springer, 2007, 306 p.
15. Valente N.A., Calascibetta A., Patianna G., Mang T., Hatton M., Andreana S. Thermodynamic Effects of 3 Different Diode Lasers on an Implant-Bone Interface: An Ex-Vivo Study With Review of the Literature. The Journal of Oral Implantology. 2017, 43(2): 94—99. doi: 10.1563/aaid-joi-D-16-00188