Received 09.07.2022
DOI: 10.35556/idr-2022-4(101)34-38
Morphological and functional features of osteoregeneration two months after implantation of “BAK-1000” in combination with angiostimulated MSCs

Demyashkin G.A.1,2, https://orcid.org/0000-0001-8447-2600, Ivanov S.Yu.1,3, https://orcid.org/0000-0001-5458-0192, Nuruev G.K.3, Fidarov A.F.3, https://orcid.org/0000-0003-4857-7629, Chuev V.V.4, SPIN-код: 6473-3599, AuthorID: 224690, Chueva A.A.4, https://orcid.org/0000-0001-6625-8432, Vadyukhin M.A.1, https://orcid.org/0000-0002-6235-1020, Bondarenko F.N.2, https://orcid.org/0000-0001-8952-4174
1 I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
Russia, 119048, Moscow, Trubetskaya St., 8, bld. 2
2 A. Tsyb Medical Radiological Research Center — branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
Russia, 249036, Kaluga region, Obninsk, Korolev St., 4
3 Peoples’ Friendship University of Russia
Russia, 117198, Moscow, Miklukho-Maklaya St., 6
4 Federal State Autonomous Educational Institution of Higher Education «Belgorod National Research University»
Russia, 308015, Belgorod, Pobeda St., 85.

E-mail address: dr.dga@mail.ru

Summary
A study presents the results of analysis the morphological and functional features of osteoregeneration one month and two months after the implantation of «BAK-1000» in combination with angiostimulated mesenchymal stem cells.
Based on the analysis of specialized literature, the authors proposed the use of the «BAK-1000» implant material as an inducer of osteoregeneration, which was further enhanced by the addition of VEGF-stimulated mesenchymal stem cells to the implant.
During the operation, which consisted of two stages, a femoral defect was created (group I) with subsequent implantation of «BAK-1000» without the addition of MSCs (group II) or in combination with autologous angiostimulated MSCs isolated at the first stage of the operation.
Based on the revealed morphological picture of the total destruction of the «BAC-1000» apatite-silicate matrix by macrophages, moderate inflammation in the implantation area and the generation of numerous quartz crystals, the proposed method for eliminating bone tissue diastasis within two months is ineffective. However, the use of VEGF-stimulated MSCs in the developed 3D bioengineered construct induced intense angiogenesis.

Keywords: osteoregeneration, implantation, aluminosilicate material, mesenchymal stem cells.

For citation: Demyashkin G.A., Ivanov S.Yu., Nuruyev G.K., Fidarov A.F., Chuev V.V., Chueva A.A., Vadyukhin M.A., Bondarenko F.N. Morphological and functional features of osteoregeneration two months after implantation of “BAK-1000” in combination with angiostimulated MSCs. Stomatology for All / Int. Dental Review. 2022, no.4(101): 34-38 (In Russian). doi: 10.35556/idr-2022-4(101)34-38

References
1. Albrektsson T., Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001, 10 Suppl. 2: S96—S101. doi:10.1007/s005860100282
2. Yun Y.R., Jang J.H., Jeon E., et al. Administration of growth factors for bone regeneration. Regen Med. 2012, 7(3): 369—385. doi:10.2217/rme.12.1
3. Buza J.A., Einhorn T. Bone healing in 2016. Clin Cases Miner Bone Metab. 2016, 13(2): 101—105. doi:10.11138/ccmbm/2016.13.2.101
4. Barinov S.M., Komlev V.S. Osteoinductive ceramic materials for bone tissue repair: octacalcium phosphate (review). Materials Science. 2009, no.10: 34—40 (In Russian).
5. Nikitin A.A., Kosyakov M.N., Beletsky B.I. Application of composite apatite-silicate material BAK-1000. Russian Dental Journal. 2002, no.5: 34—37 (In Russian).
6. Wang X., Wang Y., Gou W., Lu Q., Peng J., Lu S. Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop. 2013, 37(12): 2491—2498. doi:10.1007/s00264-013-2059-2
7. Liu H., Li D., Zhang Y., Li M. Inflammation, mesenchymal stem cells and bone regeneration. Histochem Cell Biol. 2018, 149(4): 393—404. doi:10.1007/s00418-018-1643-3
8. Gaur M., Dobke M., Lunyak V.V. Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications for Dermatological Indications and Skin Aging. Int J Mol Sci. 2017, 18(1): 208. doi:10.3390/ijms18010208
9. Hwang N.S., Zhang C., Hwang Y.S., Varghese S. Mesenchymal stem cell differentiation and roles in regenerative medicine. Wiley Interdiscip Rev Syst Biol Med. 2009, 1(1): 97—106. doi:10.1002/wsbm.26
10. Zhang D., Lv F.L., Wang G.H. Effects of HIF-1 on diabetic retinopathy angiogenesis and VEGF expression. Eur Rev Med Pharmacol Sci. 2018, 22(16): 5071—5076. doi:10.26355/eurrev_201808_15699
11. Freeman F.E., Pitacco P., Van Dommelen L.H.A., et al. Development of a 3D Bioprinted Scaffold with Spatio-temporally Defined Patterns of BMP-2 and VEGF for the Regeneration of Large Bone Defects. Bio Protoc. 2021, 11(21): e4219. doi:10.21769/BioProtoc.4219
12. Jackson M.V., Morrison T.J., Doherty D.F., et al. Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem Cells. 2016, 34(8): 2210—2223. doi:10.1002/stem.2372
13. Evans J.F., Ricigliano A.E., Morante A.V., Martinez E., Vargas D., Thyagaraj J. Mesenchymal Stem Cell Regulation of Macrophage Phagocytosis; Quantitation and Imaging. J Vis Exp. 2021, (173): 10.3791/62729. doi:10.3791/62729

Яндекс.Метрика