Received 21/11/2023
DOI: 10.35556/idr-2024-1(106)37-43
Antibacterial cryogel materials for wounds. Part 1
Fedorova K.O.1, ORCID ID: 0009-0007-7466-7958,
Shaikhaliev A.I.1,
Krasnov M.S.2,
Lozinsky V.I.2,
Isagadzhiev A.M.1
1I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
119991, Russia, Moscow, Trubetskaya St., 8, Bld. 2
2Federal State Budgetary Institution “A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)”
119334, Russia, Moscow, Vavilova St., 28
E-mail address: romashka2812@yandex.ru
Summary
Cryogel materials have found wide application in biotechnology and regenerative medicine. As wound materials, they have unique properties that distinguish them from other dressings. Due to the growing interest in them, various materials and their combinations are now being used to make cryogel wound dressings. In this review we tried to collect the most complete list of cryogel wound dressings with antimicrobial properties, to consider what natural and synthetic polymers were used in their synthesis, as well as what antibacterial agents were used by the authors to create them. We also tried to find out the pros and cons of the materials used to create dressings for wounds and to find out the prospects for the future in this direction.
Keywords: wound materials, cryogels, biomaterials, antibacterial wound dressings.
For citation: Fedorova K.O., Shaikhaliev A.I., Krasnov M.S., Lozinsky V.I., Isagadzhiev A.M. Antibacterial cryogel materials for wounds. Part 1. Stomatology for All / Int. Dental Review. 2024; no.1(106): 37–43 (in Russian). doi: 10.35556/idr-2024-1(106) 37-43
References
1. Lozinsky V.I. Cryostructuring of polymer systems. A retrospective of more than 40 years of research conducted at the A.N. Nesmeyanov Institute of Elemental Organic Compounds on cryostructuring processes in polymer systems. Gels. 2020; 6(3), 29 (in Russian). doi: 10.3390/gels6030029
2.Lozinsky V.I., Damshkaln L.G., Kurochkin I.N., Kurochkin I.I. Study of cryostructuring of polymer systems. Physico-chemical properties and morphology of polyvinyl alcohol cryogels formed by repeated freezing-thawing. Colloidal journal. 2008; 70, no.2: 212–222 (in Russian).
3.Lozinsky V.I., Damshkaln L.G., Shaskolsky B.L., Babushkina T.A., Kurochkin I.N., Kurochkin I.I. Study of cryostructuring of polymer systems. Physico-chemical properties of cryogels of polyvinyl alcohol and features of their macroporous morphology. Colloidal journal. 2007; 69, no.6: 798–816 (in Russian).
4. Razavi M., Qiao Y., Thakor A.S. Three-dimensional cryogels for biomedical applications. J Biomed Mater Res A. 2019 Dec; 107(12): 2736–2755. PMID: 31408265. PMCID: PMC7929089. doi: 10.1002/jbm.a.36777
5. Gunko V.M.; Savina I.N.; Mikhalovsky S.V. Cryogels: morphological, structural and characteristics of adsorption. 2013, 583 p. (in Russian).
6. Lozinsky V.I. A new family of macroporous and supermacroporous materials for biotechnological purposes – polymer cryogels. Bulletin of the Russian Academy of Sciences, Chemistry. 2008; no.5: 996–1013 (in Russian).
7. Kathuria N., Tripathi A., Kar K.K., Kumar A. Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering. Acta Biomaterialia. 2009; 5: 406–418.
8. Akin B, Ozmen M.M. Antimicrobial cryogel dressings towards effective wound healing. Prog Biomater. 2022 Dec; 11(4): 331–346. PMID: 36123436. PMCID: PMC9626728. doi: 10.1007/s40204-022-00202-w
9. Qiu Y., Dong Y., Zhao S., Zhang J., Huang P., Wang W., et al. N-dodecylated chitosan/graphene oxide composite cryogel for hemostasis and antibacterial treatment. J Appl Polym Sci. 2021; 138: 1–13. doi: 10.1002/ap.50572
10. Gholipourmalekabadi M., Sapru S., Samadikuchaksaraei A., Reis R.L., Kaplan D.L., Kundu S.C. Silk fibroin for skin injury repair: where do things stand? Adv Drug Deliv Rev. 2020; 153: 28–53. doi: 10.1016/J.ADDR.2019.09.003
11. Yuan H., Chen L., Hong F. A biodegradable antibacterial nanocomposite based on oxidized bacterial nanocellulose for rapid hemostasis and wound healing. ACS Appl Mater Interfaces. 2020; 12: 3382–3392. doi: 10.1021/acsami.9b17732
12. Ma G., Yang D., Zhou Y., Xiao M., Kennedy J.F., Nie J. Preparation and characterization of water-soluble N-alkylated chitosan. Carbohydr. Polym. 2008; 74(1): 121–126. doi: 10.1016/j.carbpol.2008.01.028
13. Kaur S., Dhillon G.S. Recent trends in biological extraction of chitin from marine shell wastes: A review. Crit. Rev. Biotechnol. 2015; 35: 44–61. doi: 10.3109/07388551.2013.798256
14. Philibert T., Lee B.H., Fabien N. Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl. Biochem. Biotechnol. 2017; 181: 1314–1337. doi: 10.1007/s12010-016-2286-2
15. Yeul V.S., Rayalu S.S. Unprecedented chitin and chitosan: A chemical overview. J. Polym. Environ. 2013; 21: 606–614. doi: 10.1007/s10924-012-0458-x
16. Islam S., Bhuiyan M.A.R., Islam M.N. Chitin and chitosan: Structure, properties and applications in biomedical engineering. J. Polym. Environ. 2017; 25: 854–866. doi: 10.1007/s10924-016-0865-5
17. Gull N., Khan S.M., Zahid Butt M.T., Khalid S., Shafiq M., Islam A., et al. In vitro study of chitosan-based multi-responsive hydrogels as drug release vehicles: a preclinical study. RSC Adv. 2019 Oct 1; 9(53): 31078–31091. PMID: 35529386. PMCID: PMC9072301. doi: 10.1039/c9ra05025f
18. Wang W., Du Y., Qiu Y., Wang X., Hu Y., Yang J., et al. A new green technology for direct production of low molecular weight chitosan, Carbohydr. Polym., 2008; 74: 127–132.
19. Lizardi-Mendoza J., Arguelles Monal W.M., Goycoolea Valencia F.M. Chemical Characteristics and Functional Properties of Chitosan. In Chitosan in the Preservation of Agricultural Commodities; Elsevier Inc.: Amsterdam, The Netherlands. 2016; p. 3–31. doi: 10.1016/B978-0-12-802735-6.00001-X
20. Matica M.A., Aachmann F.L., Tondervik A., Sletta H., Ostafe V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int J Mol Sci. 2019 Nov 24; 20(23): 5889. PMID: 31771245. PMCID: PMC6928789. doi: 10.3390/ijms20235889
21. Schoukens G. 5 – Bioactive dressings to promote wound healing. Woodhead Publishing; 2009, p. 114–152. ISBN 9781845692711. doi: 10.1533/9781845696306.1.114
22. Kakaei S., Shahbazi Y. Effect of chitosan-gelatin film incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil on survival of Listeria monocytogenes and chemical, microbial and sensory properties of minced trout fillet. LWT. 2016; 72(3): 432–438. ISSN 0023-6438. doi: 10.1016/j.lwt.2016.05.021
23. Nowzari F., Shabanpour B., Ojagh S.M. Comparison of chitosan-gelatin composite and bilayer coating and film effect on the quality of refrigerated rainbow trout. Food Chem. 2013 Dec 1; 141(3): 1667–72. PMID: 23870876. doi: 10.1016/j.foodchem.2013.03.022
24. Yuan G., Lv H., Tang W., Zhang X., Sun H. Effect of chitosan coating combined with pomegranate peel extract on the quality of Pacific white shrimp during iced storage. Food Control. 2016; 59: 818–823. ISSN 0956-7135. doi: 10.1016/j.foodcont.2015.07.011
25. El-tahlawy K.F., El-bendary M.A., Elhendawy A.G., Hudson S.M. The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydrate Polymers. 2005; 60, 4: 421–430. ISSN 0144-8617. doi: 10.1016/j.carbpol.2005.02.019
26. Huang R., Yang B., Zheng D., Wang B. Preparation and characterization of a quaternized chitosan. J Mater Sci. 2011; 47: 845–851. doi: 10.1007/S10853-011-5862-4
27. Li M., Zhang Z., Liang Y., He J., Guo B. Multifunctional Tissue-Adhesive Cryogel Wound Dressing for Rapid Nonpressing Surface Hemorrhage and Wound Repair. ACS Applied Materials & Interfaces. 2020. doi:10.1021/acsami.0c08285
28. Lee H., Dellatore S.M., Miller W.M., Messersmith P.B. Mussel-inspired Surface Chemistry for Multifunctional Coatings. Science. 2007; 318, 426−430.
29. Zhao X., Zhang M., Guo B., Ma P.X. Mussel-inspired Injectable Supramolecular and Covalent Bond Crosslinked Hydrogels with Rapid Self-healing and Recovery Properties via a Facile Approach Under Metal-free Conditions. J. Mater. Chem. B. 2016; 4, 41: 6644−6651.
30. Liu Y.L., Ai K.L., Lu L.H. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014; 114, 9: 5057−5115.
31. Liu C.Y., Yao W.H., Tian M., Wei J.N., Song Q.L., Qiao W.H. Mussel-inspired Degradable Antibacterial Polydopamine/silica Nanoparticle for Rapid Hemostasis. Biomaterials. 2018; 179: 83−95. doi: 10.1016/j.biomaterials.2018.06.037
32. Shin, M., Park S.G., Oh B.C., Kim K., Jo S., Lee M.S., et al. Complete Prevention of Blood Loss With Self-sealing Haemostatic Needles. Nat. Mater. 2017; 16, 147−152.
33. Liu F.Y., He X.X., Lei Z., Liu L., Zhang J.P., You H.P., et al. Facile Preparation of Doxorubicin-Loaded Upconversion@Polydopamine Nanoplatforms for Simultaneous In Vivo Multimodality Imaging and Chemophotothermal Synergistic Therapy. Adv. Healthcare Mater. 2015; 4(4): 559−568. doi: 10.1002/adhm.201400676
34. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev. 2006; 58, 15: 1655–1670. doi: 10.1016/j.addr.2006.09.020
35. Chen H., Liu D., Guo Z. Endogenous stimuli-responsive nanocarriers for drug delivery. Chem Lett. 2016; 45, 3: 242–249. doi: 10.1246/cl.151176
36. Cho H.J., Chung M., Shim M.S. Engineered photo-responsive materials for near-infrared-triggered drug delivery. J Ind Eng Chem. 2015; 31: 15–25. doi: 10.1016/j.jiec.2015.07.016
37. Liu G., Liu W., Dong C.M. UV- and NIR-responsive polymeric nanomedicines for on-demand drug delivery. Polym Chem. 2013; 4, 12: 3431–3443.
38. Raza A., Hayat U., Rasheed T., Bilal M., Iqbal H.M.N. Smart materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review. J Mater Res Technol. 2019; 8: 1497–1509. doi: 10.1016/J.JMRT.2018.03.007
39. Mura S., Nicolas J., Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature Mater. 2013; 12: 991–1003. doi: 10.1038/nmat3776
40. Maleki A., He J., Bochani S., Nosrati V., Shahbazi M.A., Guo B. Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano. 2021. doi: 10.1021/acsnano.1c08334
41. Zhao X., Guo B., Wu H., Liang Y., Ma P.X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat Commun. 2018 Jul 17; 9(1): 2784. PMID: 30018305. PMCID: PMC6050275. doi: 10.1038/s41467-018-04998-9
42. Zhao X., Liang Y., Guo B., Yin Z., Zhu D., Han Y. Injectable dry cryogels with excellent blood-sucking expansion and blood clotting to cease hemorrhage for lethal deep-wounds, coagulopathy and tissue regeneration. Chemical Engineering Journal. 2021; 403: 126329. ISSN: 1385–8947. doi: 10.1016/j.cej.2020.126329
43. Wu Y., Wang L., Guo B., Ma P.X. Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano. 2017; 11: 5646–5459. doi: 10.1021/acsnano.7b01062
44. Zhang Y., Wang Y., Chen L., Zheng J., Fan X., Xu X., et al. An injectable antibacterial chitosan-based cryogel with high absorbency and rapid shape recovery for noncompressible hemorrhage and wound healing. Biomaterials. 2022 Jun; 285: 121546. PMID: 35552114. doi: 10.1016/j.biomaterials.2022.121546
45. Lei D., Zhao J., Zhu C., Jiang M., Ma P., Mi Y., et al. Multifunctional Oxidized Dextran Cross-Linked Alkylated Chitosan/Drug-Loaded and Silver-Doped Mesoporous Bioactive Glass Cryogel for Hemostasis of Noncompressible Wounds. Gels. 2023 Jun 1; 9(6): 455. PMID: 37367126. PMCID: PMC10297613. doi: 10.3390/gels9060455
46. Yao L., Gao H., Lin Z., Dai Q., Zhu S., Li S., et al. A shape memory and antibacterial cryogel with rapid hemostasis for noncompressible hemorrhage and wound healing. Chemical Engineering Journal. 2022; 428: 131005. ISSN 1385-8947. doi: 10.1016/j.cej.2021.131005
47. Teng M., Li Z., Wu X., Zhang Z., Lu Z., Wu K., et al. Development of tannin-bridged cerium oxide microcubes-chitosan cryogel as a multifunctional wound dressing. Colloids and Surfaces B: Biointerfaces. 2022; 214: 112479. ISSN 0927-7765. doi: 10.1016/j.colsurfb.2022.112479
48. Li Y., Zhang W., Niu J., Chen Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano. 2012; 6: 5164–5173. doi: 10.1021/nn300934k
49. Sadidi H., Hooshmand S., Ahmadabadi A., Javad Hosseini S., Baino F., Vatanpour M., et al. Cerium Oxide Nanoparticles (Nanoceria): Hopes in Soft Tissue Engineering. Molecules. 2020 Oct 6; 25(19): 4559. PMID: 33036163. PMCID: PMC7583868. doi: 10.3390/molecules25194559
50. Bapat R.A., Chaubal T.V., Joshi C.P., et al. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C. 2018; 91: 881–898. doi: 10.1016/j.msec.2018.05.069
51. Khorrami S., Zarrabi A., Khaleghi M., Danaei M., Mozafari M. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine. 2018; 13: 8013–8024. doi: 10.2147/IJN.S189295
52. Ramkumar V.S., Pugazhendhi A., Gopalakrishnan K., et al. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol Rep. 2017; 14: 1–7. doi: 10.1016/j.btre.2017.02.001
53. Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q., Chu C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int J Nanomedicine. 2020 Apr 17; 15: 2555–2562. PMID: 32368040. PMCID: PMC7174845. doi: 10.2147/IJN.S246764
54. Bapat R.A., Chaubal T.V., Joshi C.P., et al. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C. 2018; 91: 881–898. doi: 10.1016/j.msec.2018.05.069
55. Khorrami S., Zarrabi A., Khaleghi M., Danaei M., Mozafari M. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine. 2018; 13: 8013–8024. doi: 10.2147/IJN.S189295
56. Ramkumar V.S., Pugazhendhi A., Gopalakrishnan K., et al. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol Rep. 2017; 14: 1–7. doi: 10.1016/j.btre.2017.02.001
57. Duran N., Nakazato G., Seabra A. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol. 2016; 100(15): 6555–6570. doi: 10.1007/s00253-016-7657-7
58. Cao S., Bi Z., Li Q., Zhang S., Singh M., Chen J. Shape memory and antibacterial chitosan-based cryogel with hemostasis and skin wound repair. Carbohydr Polym. 2023 Apr 1; 305: 120545. PMID: 36737195. doi: 10.1016/j.carbpol.2023.120545
59. Xu G., Xu N., Ren T., Chen C., Li J., Ding L., et al. Multifunctional chitosan/silver/tannic acid cryogels for hemostasis and wound healing. International Journal of Biological Macromolecules. 2022; 208: 760–771. ISSN 0141-8130. doi: 10.1016/j.ijbiomac.2022.03.174
60. Xuan H., Du Q., Li R., Shen X., Zhou J., Li B., et al. Shape-Memory-Reduced Graphene/Chitosan Cryogels for Non-Compressible Wounds. Int J Mol Sci. 2023 Jan 10; 24(2): 1389. PMID: 36674906. PMCID: PMC9863902. doi: 10.3390/ijms24021389
61. Hou S., Liu Y., Feng F., et al. Polysaccharide-peptide cryogels for multidrug-resistant-bacteria infected wound healing and hemostasis. Adv Healthc Mater. 2020; 9: 1–7. doi: 10.1002/adhm.201901041
62. Chen T.Y., Wen T.K., Dai N.T., Hsu S.H. Cryogel/hydrogel biomaterials and acupuncture combined to promote diabetic skin wound healing through immunomodulation. Biomaterials. 2021; 269: 120608. doi: 10.1016/J.BIOMATERIALS.2020.120608
63. Li Y., Wang D., Wen J., Yu P., Liu J., Li J., et al. Chemically Grafted Nanozyme Composite Cryogels to Enhance Antibacterial and Biocompatible Performance for Bioliquid Regulation and Adaptive Bacteria Trapping. ACS Nano. 2021 Dec 28; 15(12): 19672–19683. PMID: 34878257. doi: 10.1021/acsnano.1c06983
64. Fang Y., Xu Y., Wang Z., Zhou W., Yan L., Fan X., Liu H. 3D porous chitin sponge with high absorbency, rapid shape recovery, and excellent antibacterial activities for noncompressible wound. Chem Eng J. 2020. doi: 10.1016/j.cej.2020.124169
65. Cao S., Zhang K., Li Q., Zhang S., Chen J. Injectable and photothermal antibacterial bacterial cellulose cryogel for rapid hemostasis and repair of irregular and deep skin wounds. Carbohydr Polym. 2023 Nov 15; 320: 121239. PMID: 37659822. doi: 10.1016/j.carbpol.2023.121239
66. Fernandes I.A.A., Pedro A.C., Ribeiro V.R., Bortolini D.G., Ozaki M.S.C., Maciel G.M., et al. Bacterial cellulose: From production optimization to new applications. Int J Biol Macromol. 2020 Dec 1; 164: 2598–2611. PMID: 32750475. doi: 10.1016/j.ijbiomac.2020.07.255
67. Mendes B.B., Gomez-Florit M., Araujo A.C., Prada J., Babo P.S., Domingues R.M.A., et al. Intrinsically bioactive cryogels based on platelet lysate nanocomposites for hemostasis applications. Biomacromol. 2020; 21: 3678–3692. doi: 10.1021/acs.biomac.0c00787
68. Bai J., Zhang Y., Tang C., Hou Y., Ai X., Chen X., et al. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother. 2021 Jan; 133: 110985. PMID: 33212373. doi: 10.1016/j.biopha.2020.110985