Received 13/02/2024
DOI: 10.35556/idr-2024-4(109)54-58
Perforation of the periosteum in adult patients during orthodontic treatment: a literature review
Yakushina E.S., ORCID ID: 0009-0002-0968-1482
Clinic “Celsium” 143401, Russia, Moskovskaya obl, Krasnogorsk, Pavshinskiy Bul’var, 17
E-mail address: ask.doctor.yakushina@yandex.ru
Summary
Due to the high prevalence of dental anomalies in the world in adult patients, there is an increasing demand for the use of non-removable orthodontic techniques, which must be carried out taking into account the position between orthodontics and periodontics, since orthodontic treatment is associated with bone and periodontal changes in the area of replaced teeth. The periosteum plays a significant role in bone formation, and is also an essential source for bone tissue regeneration.
The purpose of this work was to study, based on data from foreign and domestic literary sources, the role of the periosteum in determining the method of orthodontic treatment and considering the risks of complications in periosteal perforation.
The literature published from 2013 to 2023 without language restrictions is analyzed.
Conclusions are drawn about the need for additional prospective studies of periosteal osteogenicity, as well as an analysis of complications after periosteal perforations using CBCT and 3D models, including an assessment of the entire treatment with longer follow-up periods (1 year and 5 years).
Keywords: periosteum, risk factors, fixed orthodontic technique, bracket system.
For citation: Yakushina E.S. Perforation of the periosteum in adult patients during orthodontic treatment: a literature review. Stomatology for All / Int. Dental Review. 2024; no. 4(109): 54-58 (in Russian). doi: 10.35556/idr-2024-4(109)54-58
References
1.Patent no. 2768191 C1 Russian Federation, IPC A61B 17/24, A61B 17/16, A61C 8/02. Method of performing compactosteotomy in combination with augmentation of soft tissues and bone: no. 2020144382 : application 31.12.2020: publ. 23.03.2022; / E. I. Gusarina, I I. Borodulina, G. A. Grebnev; applicant Federal State Budgetary Military Educational Institution of Higher Education “Military Medical Academy named after S.M. Kirov” Ministries defense of the Russian Federation (in Russian).
2. Kim S.H., Cha K.S., Lee J.W., Lee S.M. Mandibular skeletal posterior anatomic limit for molar distalization in patients with Class III malocclusion with different vertical facial patterns. Korean J Orthod. 2021 Jul 25; 51(4): 250–259. PMID: 34275881; PMCID: PMC8290085. doi: 10.4041/kjod.2021.51.4.250
3. Lombardo G., Vena F., Negri P., Pagano S., Barilotti C., Paglia L., et al. Worldwide prevalence of malocclusion in the different stages of dentition: A systematic review and meta-analysis. Eur J Paediatr Dent. 2020 Jun; 21(2): 115–122. PMID: 32567942. doi: 10.23804/ejpd.2020.21.02.05
4. Fleming P.S., Fedorowicz Z., Johal A., El-Angbawi A., Pandis N. Surgical adjunctive procedures for accelerating orthodontic treatment. Cochrane Database Syst Rev. 2015 Jun 30; 2015(6): CD010572. PMID: 26123284; PMCID: PMC6464946. doi: 10.1002/14651858.CD010572
5. Seleznev A.V., Sergienko L.I., Filatova O.S. The effect of the bracket system on the microbiocenosis of the oral cavity and periodontal tissue. Dental Forum. 2013; no. 3: 81–82 (in Russian).
6. Iskakova M.K., Kuvatbaeva U.A. Assessment of the condition of periodontal tissues in people with braces. Problems of theoretical and clinical medicine. 2019; 23, no. 1: 48–50. (in Russian).
7. Zhang W., Wang N., Yang M., Sun T., Zhang J., Zhao Y., et al. Periosteum and development of the tissue-engineered periosteum for guided bone regeneration. J Orthop Translat. 2022 Feb 16; 33: 41–54. PMID: 35228996; PMCID: PMC8858911 (in Russian). doi: 10.1016/j.jot.2022.01.002
8. Yu Y., Wang Y., Zhang W., Wang H., Li J., Pan L., et al. Biomimetic periosteum-bone substitute composed of preosteoblast-derived matrix and hydrogel for large segmental bone defect repair. Acta Biomater. 2020 Sep 1, no. 113: 317–327. PMID: 32574859 (in Russian). doi: 10.1016/j.actbio.2020.06.030
9. Mashkina Yu.I., Valieva G.R., Averyanov S.V., Gulyaeva O.A. Complications arising in the process of orthodontic treatment with non-removable equipment. Collection of articles. Omsk, 2017; 288–291 (in Russian).
10. Sevbitov A.V., Nevdakh A.S., Platonova V.V. A new approach to the treatment of traumatic erosive and ulcerative lesions of the oral mucosa in orthodontic patients. Periodontics. 2016; 21, no. 3(80): 12–14 (in Russian).
11. Stefopoulos S., Kodonas K., Tzanetakis G.N. Long-Term Clinical and Radiographic Observation of Previously Regenerated Treated Incisors Subjected to Orthodontic Movement. 2023; doi: 10.1016/j.joen.2023.08.015
12. Makhoul F., Kassis J. Studying the variation of roots’ lengths of mandibular incisors during surgically-assisted orthodontic alignment using Cone Beam Computed Tomography. 2023; doi 10.1016/j.ajoms.2023.02.010
13. Ma Z.G., Yang C., Xie Q.Y., Ye Z.X., Zhang S.Y., Abdelrehem A. A Novel Surgical Technique for Augmented Corticotomy-Assisted Orthodontics: Bone Grafting With Periosteum. 2015. doi: 10.1016/j.joms.2015.06.147
14. Kamal A.T. Does periodontally accelerated osteogenic orthodontics improve orthodontic treatment outcome? A systematic review and meta-analysis. 2019; doi: 10.1016/j.ortho.2019.03.006
15. Pini-Prato G., Evelyn A. Mancini, Papini O., Crescini A. Mucogingival approaches in young orthodontic patients: Combined strategies for success. 2014; doi: 10.1053/j.sodo.2014.06.009
16. Shima S., Nishii Y., Sueishi K. Three-dimensional evaluation of bone void induced in the cortical bone upon insertion of an orthodontic anchor screw. Orthodontic Waves, 76, 1: 9–17. 2017; doi: 10.1016/j.odw.2016.11.001
17. Yang Y., Tang W. Analysis of the influences of bracket and force system in different directions on the moment to force ratio by finite element method. J Wireless Com Network. 2018; 169. doi: 10.1186/s13638-018-1187-1
18. Akin M., Cime Akbaydogan L. Current Methods for Acceleration of Orthodontic Tooth Movement. Current Trends in Orthodontics. IntechOpen. 2022; doi: 10.5772/intechopen.100221
19. Javed F., Al-Kheraif A.A., Romanos E.B., Romanos G.E. Influence of orthodontic forces on human dental pulp: A systematic review. Archives of Oral Biology. 2015; 60, no. 2: 347–356 doi: 10.1016/j.archoralbio.2014.11.011
20. Isola G., Matarese G., Cordasco G., Perillo L., Ramaglia L. Mechanobiology of the tooth movement during the orthodontic treatment: a literature review. Minerva Stomatol. 2016 Oct; 65(5): 299–327. PMID: 27580655.
21. Papageorgiou S.N., Koletsi D., Iliadi A., Peltomaki T., Eliades T. Treatment outcome with orthodontic aligners and fixed appliances: a systematic review with meta-analyses. Eur J Orthod. 2020 Jun 23; 42(3): 331–343. PMID: 31758191. doi: 10.1093/ejo/cjz094
22. Sun W., Xia K., Huang X. et al. Knowledge of orthodontic tooth movement through the maxillary sinus: a systematic review. BMC Oral Health. 2018; no. 18(91). doi: 10.1186/s12903-018-0551-1
23. Murphy N.C., Bissada N.F., Davidovitch Z., Kucska S., Dashe J., Enlow D.H. Tissue Engineering and Stem Cell Therapy for Orthodontists. doi: 10.1016/B978-0-12-397157-9.00063-1
24. Mahardawi B., Tompkins K.A., Mattheos N., Arunjaroensuk S., Pimkhaokham A. Periosteum-derived Micrografts for bone regeneration. Connect Tissue Res. 2023 Jul; 64(4): 400–412. PMID: 37195000. doi: 10.1080/03008207.2023.2206489
25. Kim S.J., Choi T.H., Baik H.S., Park Y.C., Lee K.J. Mandibular posterior anatomic limit for molar distalization. Am J Orthod Dentofacial Orthop. 2014 Aug; 146(2): 190–7. doi: 10.1016/j.ajodo.2014.04.021
26. Lee R.J., Weissheimer A., Pham J., Go L., de Menezes L.M., Redmond W.R., et al. Three-dimensional monitoring of root movement during orthodontic treatment. Am J Orthod Dentofacial Orthop. 2015 Jan; 147(1): 132–42. doi: 10.1016/j.ajodo.2014.10.010
27. Rossini G., Parrini S., Castroflorio T., Deregibus A., Debernardi C.L. Efficacy of clear aligners in controlling orthodontic tooth movement: a systematic review. Angle Orthod. 2015 Sep; 85(5): 881–9. PMID: 25412265; PMCID: PMC8610387. doi: 10.2319/061614-436.1
28. Ahn N.L., Park H.S. Differences in distances between maxillary posterior root apices and the sinus floor according to skeletal pattern. Am J Orthod Dentofacial Orthop. 2017 Dec; 152(6): 811–819. PMID: 29173860. doi: 10.1016/j.ajodo.2017.05.021
29. Gao J., Nguyen T., Oberoi S., Oh H., Kapila S., Kao R.T., et al. The Significance of Utilizing A Corticotomy on Periodontal and Orthodontic Outcomes: A Systematic Review and Meta-Analysis. Biology (Basel). 2021 Aug 19; 10(8): 803. PMID: 34440034; PMCID: PMC8389689. doi: 10.3390/biology10080803
30. Singh S., Jayan B. Comparative Evaluation of Periodontally Accelerated Osteogenic Orthodontics (PAOO) Versus Conventional Orthodontic Tooth Movement in Adult Patients with Bimaxillary Dentoalveolar Protrusion. Int J Periodontics Restorative Dent. 2019; 39(4): 571–577. PMID: 31226197. doi: 10.11607/prd.3771
31. Alsino H.I., Hajeer M.Y., Burhan A.S., Alkhouri I., Darwich K. The Effectiveness of Periodontally Accelerated Osteogenic Orthodontics (PAOO) in Accelerating Tooth Movement and Supporting Alveolar Bone Thickness During Orthodontic Treatment: A Systematic Review. Cureus. 2022 May 14; 14(5): e24985. PMID: 35582021; PMCID: PMC9107094. doi: 10.7759/cureus.24985
32. Bahammam M.A. Effectiveness of bovine-derived xenograft versus bioactive glass with periodontally accelerated osteogenic orthodontics in adults: a randomized, controlled clinical trial. BMC Oral Health. 2016 Nov 30; 16(1): 126. PMID: 27903250; PMCID: PMC5129202. doi: 10.1186/s12903-016-0321-x
33. Wu J., Xu L., Li C., Wang X., Jiang J. Exploration of key factors in Gingival Crevicular fluids from patients undergoing Periodontally Accelerated Osteogenic Orthodontics (PAOO) using proteome analysis. BMC Oral Health. 2023 Nov 27; 23(1): 934. PMID: 38012627; PMCID: PMC10683118. doi: 10.1186/s12903-023-03606-7
34. El-Angbawi A., McIntyre G., Fleming P.S., Bearn D. Non-surgical adjunctive interventions for accelerating tooth movement in patients undergoing orthodontic treatment. Cochrane Database Syst Rev. 2023 Jun 20; 6(6): CD010887. PMID: 37339352; PMCID: PMC10281004. DOI: 10.1002/14651858.CD010887
35. Gopalakrishnan U., Madasamy R., Mathew R., Alsulaimani F.F., Sayed M., Mugri M., et al. A split-mouth randomized controlled trial to compare the rate of canine retraction after a soft tissue procedure compared against a corticotomy procedure for accelerated tooth movement. Niger J Clin Pract. 2023 Jun; 26(6): 666–673. PMID: 37470637. doi: org/10.4103/njcp.njcp_209_22
36. Owen K.M., Campbell P.M., Feng J.Q., Dechow P.C., Buschang P.H. Elevation of a full-thickness mucoperiosteal flap alone accelerates orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2017 Jul; 152(1): 49–57. PMID: 28651768. doi: 10.1016/j.ajodo.2016.11.026.
37. Rizk M., Niederau C., Florea A., Kiessling F., Morgenroth A., Mottaghy F.M., et al. Periodontal ligament and alveolar bone remodeling during long orthodontic tooth movement analyzed by a novel user-independent 3D-methodology. Sci Rep. 2023 Nov 14; 13(1): 19919. PMID: 37964111; PMCID: PMC10646115. doi: 10.1038/s41598-023-47386-0
38. Mao B., Tian Y., Xiao Y., Li J., Zhou Y. The effect of maxillary molar distalization with clear aligner: a 4D finite-element study with staging simulation. Prog Orthod. 2023 May 15; 24(1): 16PMID: 37183221; PMCID: PMC10183381. doi: 10.1186/s40510-023-00468-1
39. Tietmann C., Jepsen S., Heibrok H., Wenzel S., Jepsen K. Long-term stability of regenerative periodontal surgery and orthodontic tooth movement in stage IV periodontitis: 10-year data of a retrospective study. J Periodontol. 2023 Oct; 94(10): 1176–1186. PMID: 37010261. doi: 10.1002/JPER.23-0081
40. Castroflorio T., Sedran A., Parrini S., Garino F., Reverdito M., Capuozzo R., et al. Predictability of orthodontic tooth movement with aligners: effect of treatment design. Prog Orthod. 2023 Jan 16; 24(1): 2. Erratum in: Prog Orthod. 2023 Oct 24; 24(1): 47. PMID: 36642743; PMCID: PMC9840984. doi: 10.1186/s40510-022-00453-0
41. Blashkova S.L., Mustafin I.G., Khaliullina G.R. Peculiarities of immune regulation processes in periodontal tissues in patients undergoing orthodontic treatment. Parodontologiya. 2016; 21(3): 23–26 (in Russian).
42. Ke Y., Zhu Y., Zhu M. A comparison of treatment effectiveness between clear aligner and fixed appliance therapies. BMC Oral Health. 2019 Jan 23; 19(1): 24. PMID: 30674307; PMCID: PMC6343314. doi: 10.1186/s12903-018-0695-z
43. Fiori A., Minervini G., Nucci L., d’Apuzzo F., Perillo L., Grassia V. Predictability of crowding resolution in clear aligner treatment. Prog Orthod. 2022 Nov 28; 23(1): 43. PMID: 36437397; PMCID: PMC9702322. doi: 10.1186/s40510-022-00438-z
44. Tang Y., Wu B., Huang T., Wang H., Shi R., Lai W., et al. Collision of Commonality and Personalization: Better Understanding of the Periosteum. Tissue Eng Part B Rev. 2023 Apr; 29(2): 91–102. PMID: 36006374. doi: 10.1089/ten.TEB.2022.0076
45. Zhang W., Wang N., Yang M., Sun T., Zhang J., Zhao Y., et al. Periosteum and development of the tissue-engineered periosteum for guided bone regeneration. J Orthop Translat. 2022 Feb 16; 33: 41–54. PMID: 35228996; PMCID: PMC8858911. doi: 10.1016/j.jot.2022.01.002
46. Benlidayi M.E., Gaggl A., Buerger H., Kahraman O.E., Sencar L., Brandtner C., et al. Comparative study of the osseous healing process following three different techniques of bone augmentation in the mandible: an experimental study. Int J Oral Maxillofac Surg. 2014 Nov; 43(11): 1404–1410. PMID: 25091894. doi: 10.1016/j.ijom.2014.07.004