Received 30.11.2022
DOI: 10.35556/idr-2023-1(102)48-55
Pathophysiological and clinical aspects of comorbidity of coronavirus disease and chronic generalized periodontitis (literature review)
Sandler I.V., Amkhadova M.A.
Moscow Regional Research and Clinical Insitute (MONIKI)
Russia, 129110, Moscow, Shchepkina St, 61/2, bld. 1

E-mail address: alald@inbox.ru

Summary
The purpose of the literature review was to conduct a general analysis of the literature data on the study of comorbidity between coronavirus disease and inflammatory periodontal diseases. Studies have found that periodontitis is significantly associated with a higher risk of complications from COVID-19, including intensive care unit hospitalization, the need for assisted ventilation and death, as well as increased blood levels of markers associated with worse COVID-19 outcome. 19, such as D-dimer, serum leukocyte level and CRP concentration. The article describes the mechanisms of penetration of the SARS-CoV-2 virus into the human body, the common links of pathogenesis between COVID-19 and periodontitis, the importance of oral hygiene for patients with COVID-19, and considers the clinical and general immunological aspects of inflammation in COVID-19 and periodontitis. Currently, most research is focused on whether the presence of periodontal disease affects the outcome of coronavirus disease. The possibility of cross-talk between SARS-CoV-2 and the oral microbiome, which may affect the subsequent course of periodontitis at the post-covid stage, presents the scientific interest.

Keywords: coronavirus disease, periodontitis, inflammation, comorbidity.

For citation: Sandler I.V., Amkhadova M.A. Pathophysiological and clinical aspects of comorbidity of coronavirus disease and chronic generalized periodontitis (literature review). Stomatology for All / Int. Dental Review. 2023, no.1(102): 48-55 (In Russian). doi: 10.35556/idr-2023-1(102)48-55

Литература/ References
1. Hui D.S., Madani E.I.A., Ntoumi T.A., Kock F., Dar R.O., Ippolito G. et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health – The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020, 91: 264—266. doi: 10.1016/j.ijid.2020.01.009
2. Rathi M., Jeloka T., Prasad N., Bansal S., Agarwal S.K., Bhalla A.K. et al. Chronic kidney disease and hypertension with reference to COVID-19. Indian J Nephrol. 2020, 30(3): 155—157. doi: 10.4103/ijn.IJN_168_20
3. Sahni V., Gupta S. COVID-19 & Periodontitis: the cytokine connection. Med Hypotheses. 2020, 144: 109908. doi: 10.1016/j.mehy.2020.109908
4. Ling M.R., Chapple I.L., Matthews J.B. Peripheral blood neutrophil cytokine hyper-reactivity in chronic periodontitis. Innate Immunity. 2015, 21(7): 714—725. doi: 10.1177/1753425915589387
5. Mo P., Xing Y., Xiao Y., Deng L., Zhao Q., Wang H. et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin Infect Dis. 2020, 73(11): 270. doi: 10.1093/cid/ciaa270
6. Петрухина Н.Б., Зорина О.А., Абаев З.М., Картышева Е.В., Салтовец М.В. Влияние гендерных, возрастных и метаболических факторов на течение хронического генерализованного пародонтита у пациентов с метаболическим синдромом. Стоматология. 2019, 98(2): 31—36.
6. Petrukhina N.B., Zorina O.A., Abaev Z.M., Kartysheva E.V., Saltovets M.V. Influence of gender, age and metabolic factors on the course of chronic generalized periodontitis in patients with metabolic syndrome. Stomatology. 2019, 98(2): 31—36 (In Russian). doi: 10.17116/stomat20199802131
7. Sampson V. Oral hygiene risk factor. British Dental Journal. 2020, 228(8): 569. doi: 10.1038/s41415-020-1545-3
8. Marouf N., Cai W., Said K.N., Daas H., Diab H., Chinta V.R. et al. Association between periodontitis and severity of COVID19 infection: A case-control study. J Clin Periodontol. 2021, 48(4): 483—491. doi: 10.1111/jcpe.13435
9. Madapusi Balaji T., Varadarajan S., Rao U.S.V., Raj A.T., Patil S., Arakeri G. et al. Oral cancer and periodontal disease increase the risk of COVID 19. A mechanism mediated through furin and cathepsin overexpression. Med Hypotheses. 2020, 144: 109936. doi: 10.1016/j.mehy.2020.109936
10. Xu H., Zhong L., Deng J., Peng J., Dan H., Zeng X. et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020, 12(1): 8. doi: 10.1038/s41368-020-0074-x
11. Descamps G., Verset L., Trelcat A. et al. ACE2 Protein Landscape in the Head and Neck Region: The Conundrum of SARS-CoV-2 Infection. Biology (Basel). 2020, 9(8): 235. doi: 10.3390/biology9080235
12. Barabari P., Moharamzadeh K. Novel coronavirus (COVID-19) and dentistry–a comprehensive review of literature. Dentistry Journal. 2020, 8(2): 53. doi: 10.3390/dj8020053
13. Pascolo L., Zupin L., Melato M., Tricarico P.M., Crovella S. TMPRSS2 and ACE2 coexpression in SARS-CoV-2 salivary glands infection. J Dent Res. 2020, 99(10): 1120—1121. doi: 10.1177/0022034520933589
14. Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020, 181(2): 271—280.e8. doi: 10.1016/j.cell.2020.02.052
15. Wang K., Chen W., Zhou Y-S., Lian J-Q., Zhang Z., Du P. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv. 2020, 5(1): 283. doi: 10.1038/s41392-020-00426-x
16. Feldman M., La V.D., Lombardo Bedran T.B., Palomari Spolidorio D.M., Grenier D. Porphyromonas gingivalis-mediated shedding of extracellular matrix metalloproteinase inducer (EMMPRIN) by oral epithelial cells: a potential role in inflammatory periodontal disease. Microbes Infect. 2011, 13(14–15): 1261—1269. doi: 10.1016/j.micinf.2011.07.009
17. Matuck F.B., Dolhnikoff M., Maia G.V.A., Isaac Sendyk D., Zarpellon A., Costa Gomes S. et al. Periodontal tissues are targets for Sars-Cov-2: a postmortem study. J Oral Microbiol. 2020, 13(1): 1848135. doi: 10.1080/20002297.2020.1848135
18. Gupta S., Mohindra R., Chauhan P.K., Singla V., Goyal K., Sahni V. et al. SARS-CoV-2 Detection in Gingival Crevicular Fluid. J Dent Res. 2021, 100(2): 187—193. doi: 10.1177/0022034520970536
19. Bao L., Zhang C., Dong J., Zhao L., Li Y., Sun J. Oral microbiome and SARS-CoV-2: beware of lung co-infection. Frontiers in Microbiology. 2020, 11: 1840. doi: 10.3389/fmicb.2020.01840
20. Conti P., Ronconi G., Caraffa A., Gallenga C.E., Ross R., Frydas I., Kritas S.K. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020, 34(2): 327—331. doi: 10.23812/CONTI-E
21. Zhang C., Wu Z., Li J.W., Zhao H., Wang G.Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020, 55(5): 105954. doi: 10.1016/j.ijantimicag.2020.105954
22. Зорина О.А., Амхадова М.А., Хамукова А.А., Алескеров Э.Ш., Айрапетов Г.А., Демидова А.А. Особенности остеоиммунологических аспектов остеорезорбции при периимплантите, хроническом пародонтите и раке альвеолярного отростка и альвеолярной части челюстей. Стоматология. 2020, 99(4): 27—32. doi: 10.17116/stomat20209904127
22. Zorina O.A., Amkhadova M.A., Khamukova A.A., Aleskerov E.Sh., Ajrapetov G.A., Demidova A.A. Osteoimmunological aspects of periodontal inflammatory destructive changes at periimplantitis, chronic periodontitis and oncological diseases of the oral cavity. Stomatology. 2020, 99(4): 27—32. (In Russian). doi: 10.17116/stomat20209904127
23. Graves D. Cytokines that promote periodontal tissue destruction. J Periodontol. 2008, 79(8 Suppl): 1585—1591. doi: 10.1902/jop.2008.080183
24. Liccardo D., Cannavo A., Spagnuolo G., Ferrara N., Cittadini A., Rengo C. et al. Periodontal Disease: A Risk Factor for Diabetes and Cardiovascular Disease. Int J Mol Sci. 2019, 20(6): 1414. doi: 10.3390/ijms20061414
25. Mathieu E., Escribano-Vazquez U., Descamps D., Cherbuy C., Langella P., Riffault S. et al. Paradigms of lung microbiota functions in health and disease, particularly, in asthma. Front Physiol. 2018, 9: 1168. doi: 10.3389/fphys.2018.01168
26. Liu F.T. Galectins: a new family of regulators of inflammation. Clin Immunol. 2000, 97(2): 79—88. doi: 10.1006/clim.2000.4912
27. Caniglia J.L., Guda M.R., Asuthkar S., Tsung A.J., Velpula K.K. A potential role for Galectin-3 inhibitors in the treatment of COVID-19. PeerJ. 2020, 8: e9392. doi: 10.7717/peerj.9392
28. Sjogren P., Nilsson E., Forsell M., Johansson O., Hoogstraate J.A. Systematic review of the preventive effect of oral hygiene on pneumonia and respiratory tract infection in elderly people in hospitals and nursing homes: effect estimates and methodological quality of randomized controlled trials. J Am Geriatr Soc. 2008, 56(11): 2124—2130. doi: 10.1111/j.1532-5415.2008.01926.x
29. Hayata M., Watanabe N., Tamura M., Kamio N., Tanaka H., Nodomi K. et al. The periodontopathic bacterium fusobacterium nucleatum induced proinflammatory cytokine production by human respiratory epithelial cell lines and in the lower respiratory organs in mice. Cell Physiol Biochem. 2019, 53(1): 49—61. doi: 10.33594/000000120
30. Carvalho Baptista M., Martinho F.C., Nascimento G.G., da Rocha Santos C.E., Prado R.F., Valera M.C. Colonization of oropharynx and lower respiratory tract in critical patients: risk of ventilator-associated pneumonia. Archives of Oral Biology. 2018, 85: 64—69. doi: 10.1016/j.archoralbio.2017.09.029
31. Zijie S., Yan X., Lu K. et al. Genomic diversity of SARSCoV-2 in coronavirus disease 2019 patients. Clinical Infectious Diseases. 2020, 71(15): 713—720. doi: 10.1093/cid/ciaa203/5780800
32. Takahashi Y., Watanabe N., Kamio N. et al. Expression of the SARS-CoV-2 receptor ACE2 and proinflammatory cytokines induced by the periodontopathic bacterium Fusobacterium nucleatum in human respiratory epithelial cells. International Journal of Molecular Sciences. 2021, 22(3): 1352. doi: 10.3390/ijms22031352
33. Takahashi Y., Watanabe N., Kamio N., Kobayashi R., Iinuma T., Imai K. Aspiration of periodontopathic bacteria due to poor oral hygiene potentially contributes to the aggravation of COVID-19. Journal of Oral Science. 2021, 63(1): 1—3. doi: 10.2334/josnusd.20-0388
34. Pitones-Rubio V., Chavez-Cortez E.G., Hurtado-Camarena A., Gonzalez-Rascon A., Serafin-Higuera N. Is periodontal disease a risk factor for severe COVID-19 illness. Med Hypotheses. 2020, 144: 109969. doi: 10.1016/j.mehy.2020.109969
35. Mancini L., Quinzi V., Mummolo S., Marzo G., Marchetti E. Angiotensinconverting enzyme 2 as a possible correlation between COVID-19 and periodontal disease. Appl Sci. 2020, 10: 6224. doi: 10.3390/app10186224
36. Chakraborty S.S. Metagenome of SARS-CoV2 patients in Shenzhen with travel to Wuhan shows a wide range of species — Lautropia, Cutibacterium, Haemophilus being most abundant – and Campylobacter explaining diarrehoea. The lancet. 2020, no.1(3): 105. doi: 10.1016/S2666-5247(20)30057-4
37. Cox M.J., Loman N., Bogaert D., O’Grady J. Co-infections: potentially lethal and unexplored in COVID-19. Lancet Microbe. 2020, 1(1): e11. doi: 10.1 016/S2666-5247(20)30009-4
38. Sampson V., Kamona N., Sampson A. Could there be a link between oral hygiene and the severity of SARS-CoV-2 infections? Br Dent J. 2020, 228(12): 971—975. doi: 10.1038/s41415-020-1747-8
39. Ardizzoni A., Pericolini E., Paulone S. et al. In vitro effects of commercial mouthwashes on several virulence traits of Candida albicans, viridans streptococci and Enterococcus faecalis colonizing the oral cavity. PLoS One. 2018, 13(11): e0207262. doi: 10.1371/journal.pone.0207262
40. Pierre-Bez A.C., Agostini-Walesch G.M., Bradford Smith P. et al. Ultrasonic scaling in COVID-era dentistry: a quantitative assessment of aerosol spread during simulated and clinical ultrasonic scaling procedures. International Journal of Dental Hygiene. 2021, 19(4): 474—480. doi: 10.1111/idh.12548
41. Lazarevic I., Pravica V., Miljanovic D., Cupic M. Immune evasion of SARS-CoV-2 emerging variants: what have we learnt so far? Viruses. 2021, 13(7): 1192. doi: 10.3390/v13071192
42. Jain A., Grover V., Singh C. et al. Chlorhexidine: an effective anticovid mouth rinse. Journal of Indian Society of Periodontology. 2021, 25(1): 86—88. doi: 10.4103/jisp.jisp_824_20
43. Deeks J.J., Dinnes J.J. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database of Systematic Reviews. 2020. 2020(6): CD013652. doi: 10.1002/14651858.CD013652
44. Tay M.Z., Poh C.M., Renia L., MacAry P.A., Ng L.F. The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology. 2020, 20(6): 363—374. doi: 10.1038/s41577-020-0311-8
45. Siu K.L., Yuen K.S., Castano-Rodriguez C. et al. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. The FASEB Journal. 2019, 33(8): 8865—8877. doi: 10.1096/fj.201802418R
46. Ramseier C.A., Anerud A., Dulac M. et al. Natural history of periodontitis: disease progression and tooth loss over 40 years. Journal of Clinical Periodontology. 2017, 44(12): 1182—1191. doi: 10.1111/jcpe.12782
47. Отделенов В.А., Цветов В.М., Сычев Д.А. Возможность применения препарата барицитиниб у пациентов с COVID-19, в том числе для терапии «цитокинового шторма». Качественная клиническая практика. 2020; №S4: 11—14. doi. 10.37489/2588-0519-2020-S4-11-14
47. Otdelenov V.A., Tsvetov V.M., Sychev D.A. Possibility to use barycytinib in patients with COVID-19, including for treatment of «cytokine storm». Good Clinical Practice. 2020; (4S): 11—14 (In Russian.). doi. 10.37489/2588-0519-2020-S4-11-14
48. Hu B., Huang S., Yin L. The cytokine storm and COVID-19. Journal of Medical Virology. 2021, 93(1): 250—256. doi: 10.1002/jmv.26232
49. Horby P. et al. Eff ect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report. medRxiv. Cold Spring Harbor Laboratory Press. 2020, 384(8): 693—704. doi: 10.1056/NEJMoa2021436
50. Fernandez-Cruz A. et al. Impact of glucocorticoid treatment in SARSCOV-2 infection mortality: a retrospective controlled cohort study. medRxiv. American Society for Microbiology Journals. 2020. doi: 10.1101/2020.05.22.20110544
51. Elisetti N. Periodontal pocket and COVID-19: could there be a possible link? Medical Hypotheses. 2021, 146: 110355. doi: 10.1016/j.mehy.2020.110355
52. Zang Y., Song J., Oh S. et al. Targeting NLRP3 inflammasome reduces age-related experimental alveolar bone loss. Journal of Dental Research. 2020, 99(11): 1287—1295. doi: 10.1177/0022034520933533
53. Isola G., Polizzi A., Santonocito S., Alibrandi A., Williams R.C. Periodontitis activates the NLRP3 inflammasome in serum and saliva. Journal of Periodontology. 2021, 93(1): 135—145. doi: 10.1002/JPER.21-0049
54. Yamaguchi Y., Kurita-Ochiai T., Kobayashi R., Suzuki T., Ando T. Regulation of the NLRP3 inflammasome in Porphyromonas gingivalis-accelerated periodontal disease. Inflammation Research. 2017, 66(1): 59—65. doi: 10.1007/s00011-016-0992-4
55. Reiter R.J., Sharma R., Ma Q., Dominquez-Rodriguez A., Marik P.E., Abreu-Gonzalez P. Melatonin inhibits COVID-19-induced cytokine storm by reversing aerobic glycolysis in immune cells: a mechanistic analysis. Medicine in Drug Discovery. 2020, 6: 100044. doi: 10.1016/j.medidd.2020.100044
56. Kose O., Kurt Bayrakdar S., Akyıldız K. et al. Melatonin ameliorates periodontitis-related inflammatory stress at cardiac left ventricular tissues in rats. Journal of Periodontology. 2020, 91(11): 1486—1494. doi: 10.1002/JPER.19-0685
57. Sadeghi A., Tahmasebi S., Mahmood A. et al. Th17 and Treg cells function in SARS-CoV2 patients compared with healthy controls. Journal of Cellular Physiology3. 2021, 236(4): 2829—2839. doi: 10.1002/jcp.30047
58. Bunte K., Beikler T. Th17 cells and the IL-23/IL-17 axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases. International Journal of Molecular Sciences. 2019, 20(14): 3394. doi: 10.3390/ijms20143394
59. Inonu E., Kayis S.A., Eskan M.A., Hakki S.S. Salivary Del-1, IL-17, and LFA-1 levels in periodontal health and BioMed Research International 7 disease. Journal of Periodontal Research. 2020, 55(4): 511—518. doi: 10.1111/jre.12738
60. Cifcibasi E., Koyuncuoglu C., Ciblak M. et al. Evaluation of local and systemic levels of interleukin-17, interleukin-23, and myeloperoxidase in response to periodontal therapy in patients with generalized aggressive periodontitis. Inflammation. 2015, 38(5): 1959—1968. doi: 10.1007/s10753-015-0176-3
61. Veras F.P., Pontelli M.C., Silva C.M. et al. SARS-CoV-2 — triggered neutrophil extracellular traps mediate COVID-19 pathology. Journal of Experimental Medicine. 2020, 217(12): e20201129. doi: 10.1084/jem.20201129
62. Mozzini C., Girelli D. The role of neutrophil extracellular traps in Covid-19: only an hypothesis or a potential new field of research? Thrombosis Research. 2020, 191: 26—27. doi: 10.1016/j.thromres.2020.04.031
63. Masso-Silva J.A., Moshensky A., Lam M.T. et al. Increased peripheral blood neutrophil activation phenotypes and NETosis in critically ill COVID-19 patients: a case series and review of the literature. Clinical Infectious Diseases. 2021, 191: 26—27. doi: 10.1016/j.thromres.2020.04.031
64. George S., Suchetha A., Apoorva S.M., Sapna N., Darshan B.M., Bhat D. Neutrophil extracellular trapsperiodontal implications of netosis: a literature review. International Journal of Applied Dental Sciences. 2021, 7(1): 234—240. doi: 10.22271/oral.2021.v7.i1d.1138
65. Gupta S., Sahni V. The intriguing commonality of NETosis between COVID-19 & periodontal disease. Medical Hypotheses. 2020, 144: 109968. doi: 10.1016/j.mehy.2020.109968
66. Rudick C.P., Lang M.S., Miyamoto T. Understanding the pathophysiology behind chairside diagnostics and genetic testing for IL-1 and IL-6. Oral Diseases. 2019, 25(8): 1879—1885. doi: 10.1111/odi.13030
67. Nasonov E., Samsonov M. The role of interleukin 6 inhibitors in therapy of severe COVID-19. Biomedicine & Pharmacotherapy. 2020, 131: 110698. doi: 10.1016/j.biopha.2020.110698
68. Mazzoni A., Salvati L., Maggi L. et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. The Journal of Clinical Investigation. 2020, 130(9): 4694—4703. doi: 10.1172/JCI138554
69. Coomes E.A., Haghbayan H. Interleukin-6 in COVID19: a systematic review andmeta analysis. Reviews in Medical Virology. 2020, 30(6): 1—9. doi: 10.1002/rmv.2141
70. Anand P.S., Jadhav P., Kamath K.P., Kumar S.R., Vijayalaxmi S., Anil S. A case-control study on the asso ciation between periodontitis and coronavirus disease (COVID-19). Journal of Periodontology. 2021, 93(4): 584—590. doi: 10.1002/JPER.21-0272
71. Wu Y., Cheng X., Jiang G. et al. Altered oral and gut microbiota and its association with SARS-CoV-2 viral load in COVID-19 patients during hospitalization. npj Biofilms and Microbiomes. 2021, 7(1): 61. doi: 10.1038/s41522-021-00232-5
72. LaMonte M.J., Genco R.J., Hovey K.M., Wallace R.B., Freudenheim J.L., Michaud D.S. et al. History of Periodontitis Diagnosis and Edentulism as Predictors of Cardiovascular Disease, Stroke, and Mortality in Postmenopausal Women. J Am Heart Assoc. 2017, 6(4): e004518. doi: 10.1161/JAHA.116.004518
73. Munoz Aguilera E., Suvan J., Buti J., Czesnikiewicz-Guzik M., Barbosa Ribeiro A., Orlandi M. et al. Periodontitis is associated with hypertension: a systematic review and meta-analysis. Cardiovasc Res. 2020, 116(1): 28—39. doi:10.1093/cvr/cvz201
74. Gomes-Filho I.S., Cruz S.S.D., Trindade S.C., Passos-Soares J.S., Carvalho-Filho P.C., Figueiredo A. et al. Periodontitis and respiratory diseases: A systematic review with meta-analysis. Oral Dis. 2020, 26(2): 439–446. doi:10.1111/odi.13228
75. Romandini M., Baima G., Antonoglou G., Bueno J., Figuero E. et al. Periodontitis, Edentulism and Risk of Mortality: A Systematic Review with Meta-analyses. J Dent Res. 2020, 100(1): 37—49. doi: 10.1177/0022034520952401
76. Schenkein H.A., Papapanou P.N., Genco R., Sanz M. Mechanisms underlying the association between periodontitis and atherosclerotic disease. Periodontol 2000. 2020, 83(1): 90—106. doi: 10.1111/prd.12304

Яндекс.Метрика