Received 15.06.2025
DOI: 10.35556/idr-2025-4(113)70-76
Evaluation of the condition of tissues of temporary teeth of children with hypophosphatasia using computed micro-tomography
Alekseeva I.A., ORCID: 0000-0002-9409-3046
Kiselnikova L.P., ORCID: 0000-0003-2095-9473
Petrovskaya V.V., ORCID: 0000-0001-8298-9913
Lezhnev D.A., ORCID: 0000-0002-7163-2553
Drobyshev A.Yu.,
Redko N.A., ORCID: 0000-0001-7807-9351
Kunizhev K.A., ORCID: 0009-0001-9077-6528
Federal State Budgetary Educational Institution of Higher Education “Russian University of Medicine” of the Ministry of Health of the Russian Federation
127006, Russia, Moscow, Dolgorukovskaya St., 4
E-mail address: alexeeva.penza@yandex.ru
Summary
The aim of this study was to compare the morphometric data and mineral density of primary teeth in children with hypophosphatasia and healthy peers. The in vitro study design included a comparative analysis of scanned samples of primary teeth from pediatric patients with hypophosphatasia and somatically healthy children of the same age using computed microtomography (micro-CT). The analysis revealed that hypophosphatasia in children is associated with impaired structural formation of dental mineral tissues, manifested by changes in thickness and impaired tissue mineralization processes. Reduced levels of dentin and cementum mineralization were detected, significantly low in the cervical zone (at the enamel-cement junction), and the presence of erosion (destructive changes) along the entire contour of the roots of primary teeth, which may be associated with a deficiency of tissue-specific alkaline phosphatase, which is critical for tissue mineralization. The noted features of the morphology and mineral profiles of dental tissues may be an important criterion for assessing genetic disorders in the formation of mineral structures in a rare hereditary disease – hypophosphatasia.
Keywords: hypophosphatasia, children, computed microtomography, samples of primary teeth.
For citation: Alekseeva I.A., Kiselnikova L.P., Petrovskaya V.V., Lezhnev D.A., Drobyshev A.Yu., Redko N.A., Kunizhev K.A. Evaluation of the condition of tissues of temporary teeth of children with hypophosphatasia using computed microtomography. Stomatology for All / Int. Dental Review. 2025; no. 4 (113): 70–76 (in Russian). doi: 10.35556/idr-2025-4(113)70-76
References
1. Kiselnikova L., Vislobokova E., Voinova V. Dental manifestations of hypophosphatasia in children and the effect of enzyme replacement therapy on the dental status: a series of clinical cases. Reports on clinical cases. 2020; no. 8: 911–918 (in Russian). doi: 10.1002 / ccr3.2789
2. Lezhnev D.A., Vislobokova E.V., Kiselnikova L.P. Comparative analysis of the morphostructural characteristics of the primary teeth of a patient with hypophosphatemic rickets based on microtomography data. Radiology – practice. 2020; no. (1): 52–64 (in Russian).
3. Reshetnikov A., Shaikhattarova N., Mazurok M., Kasatkina N. Dental Tissue Density in Healthy Children Based on Radiological Data: Retrospective Analysis. JMIRx Med. 2024; no. 5: e56759. doi: 10.2196/56759
4. Akbulut N., Çetin S., Bilecenoglu B., Altan A., Akbulut S., Ocak M., Orhan K. The micro-CT evaluation of enamel-cement thickness, abrasion, and mineral density in teeth in the postmortem interval (PMI): new parameters for the determination of PMI. Int J Legal Med. 2020; no. 134 (2): 645–653. doi: 10.1007/s00414-019-02104-2
5. Chalas R., Szlazak K., Wojcik-Checinska I., Jaroszewicz J., Molak R., Czechowicz K. Observations of mineralised tissues of teeth in X-ray micro-computed tomography. Folia Morphol (Warsz). 2017; no. 76 (2): 143–148. doi: 10.5603/FM.a2016.0070
6. Chu E.Y., Vo T.D., Chavez M.B., Nagasaki A., Mertz E.L., Nociti F.H. et al. Genetic and pharmacological modulation of cementogenesis via pyrophosphate regulators. Bone. 2020; no. 136: 115329. doi: 10.1016/j.bone.2020.115329
7. Foster B.L., Nagatko K.J., Nociti F.H. Jr., Fong H., Dunn D., Tran A.B. et al. Central role of pyrophosphate in acellular cementum formation. PLoS One. 2012; no. 7 (6): e38393. doi: 10.1371/journal.pone.0038393
8. Foster B.L., Ramnitz M.S., Gafni R.I., Burke A.B., Boyce A.M., Lee J.S. et al. Rare bone diseases and their dental, oral, and craniofacial manifestations. J Dent Res. 2014; no. 93 (7): 7–19. doi: 10.1177/0022034514529150
9. Fujikawa K., Socorro M., Lukashova L., Hoskere P., Keskinidis P., Verdelis K., Napierala D. Deficiency of Trps1 in Cementoblasts Impairs Cementogenesis and Tooth Root Formation. Calcif Tissue Int*. 2024 Aug 23. doi: 10.1007/s00223-024-01277-2
10. Giuca M.R. Rare diseases: a challenge in paediatric dentistry. Eur J Paediatr Dent. 2024; no. 25 (3): 171. doi: 10.23804/ejpd.2024.25.03.01
11. Hayashi-Sakai S., Numa-Kinjoh N., Sakamoto M., Sakai J., Matsuyama J., Mitomi T. et al. Hypophosphatasia: Evaluation of Size and Mineral Density of Exfoliated Teeth. J Clin Pediatr Dent. 2016; no. 40 (6): 496–502. doi: 10.17796/1053-4628-40.6.496
12. Hayashi-Sakai S., Sakamoto M., Hayashi T., Kondo T., Sugita K., Sakai J. et al. Evaluation of permanent and primary enamel and dentin mineral density using micro-computed tomography. Oral Radiol. 2019; no. 35 (1): 29–34. doi: 10.1007/s11282-018-0315-2
13. Hayashi-Sakai S., Hayashi T., Sakamoto M., Sakai J., Shimomura-Kuroki J., Nishiyama H. et al. Nondestructive Microcomputed Tomography Evaluation of Mineral Density in Exfoliated Teeth with Hypophosphatasia. Case Rep Dent. 2016; no. 2016: 4898456. doi: 10.1155/2016/4898456
14. Hung K.F., Ai Q.Y.H., Leung Y.Y., Yeung A.W.K. Potential and impact of artificial intelligence algorithms in dento-maxillofacial radiology. Clin Oral Investig. 2022; no. 26 (9): 5535–5555. doi: 10.1007/s00784-022-04477-y
15. Millan J.L., Whyte M.P. Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int. 2016; no. 98 (4): 398–416. doi: 10.1007/s00223-015-0079-1
16. Ribeiro T.R., Costa F.W.G., Soares E.C.S., Williams J.R. Jr., Fonteles C.S. Enamel and dentin mineralization in familial hypophosphatemic rickets: a micro-CT study. Dentomaxillofac Radiol. 2015; no. 44 (5): 20140347. doi: 10.1259/dmfr.20140347
17. Shapurian T., Damoulis P.D., Reiser G.M., Griffin T.J., Rand W.M. Quantitative evaluation of bone density using the Hounsfield index. Int J Oral Maxillofac Implants. 2006; no. 21 (2): 290–297.
18. Tournis S., Yavropoulou M.P., Polyzos S.A., Doulgeraki A. Hypophosphatasia. J Clin Med. 2021; no. 10 (23): 5676. doi: 10.3390/jcm10235676
19. van den Bos T., Handoko G., Niehof A., Ryan L.M., Coburn S.P., Whyte M.P., Beertsen W. Cementum and dentin in hypophosphatasia. J Dent Res. 2005; no. 84 (11): 1021–1025. doi: 10.1177/154405910508401110
20. Yavuz Y., Akleyin E., Dogan M.S., Goncharuk-Khomyn M., Akkus Z. Can the density of mineralized dental tissues (dentin and enamel) be measured and compared with 3D cone beam computed tomography in cases of ectodermal dysplasia? Med Sci Monit. 2022; no. 28: e937003. doi: 10.12659/MSM.937003