DOI: 10.35556/idr-2020-4(93)34-39
06.10.2020
Results of studying the dimensional accuracy of the bases of complete removable prostheses made using 3D printing and traditional technologies
Vokulova Yu.A.1, Zhulev E.N.2,
1Clinic No. 2 of the Federal customs service of Russia
603098, Russia, Nizhny Novgorod, Artel’naya Ulitsa, 2
2Federal State Budgetary Educational Institution of Higher Education “Privolzhsky Research Medical University” of the Ministry of Health of the Russian Federation
603005, Russia, Nizhny Novgorod, Pl. Minin and Pozharsky, 10/1
E-mail address: vokulova.yulya@yandex.ru
Summary
This article presents the results of studying the dimensional accuracy of the bases of complete removable prostheses made using a 3D printer and the traditional method. Bases of complete removable prostheses were made using an intraoral laser scanner iTero Cadent (USA) and a 3D printer Asiga Max UV (Australia). To study the dimensional accuracy of the bases of complete removable prostheses, we used the DentalCAD 2.2 Valletta software. The Nonparametric Wilcoxon W-test was used for statistical analysis of the obtained data. We found that the average value of the difference with the standard for bases made using digital technologies is 0.08744±0.0484 mm. The average value of the difference with the standard for bases made by the traditional method is 0.5654±0.1611 mm. Based on these data, we concluded that the bases of complete removable prostheses made using modern digital technologies (intraoral laser scanning and 3D printer) have a higher dimensional accuracy compared to the bases of complete removable prostheses made using the traditional method with a significance level of p<0.05 (Wilcoxon's W-test=0, p=0.031).
Keywords: digital technologies in dentistry, digital impressions, intraoral scanner, 3D printing, ExoCAD, complete removable dentures.
For citation: Vokulova Y.A., Zhulev E.N. Results of studying the dimensional accuracy of the bases of complete removable prostheses made using 3D printing and traditional technologies. Stomatology for All / Int. Dental Review. 2020, no.4(93): 34-39 (In Russian). doi: 10.35556/idr-2020-4(93)34-39
References
1. Zhulev E.N., Vokulova Yu.A. The technique of applying digital prints to explore the quality of the retraction of the gingival margin. Kuban Scientific Medical Bulletin. 2017, 1(162): 46—48. doi:10.25207/1608-6228-2017-1-46-48 (In Russian).
2. Karyakin N.N., Gorbatov R.O. 3D printing in medicine. Moscow: GEOTAR-Media, 2019: 194—221 (In Russian).
3. Lebedenko I.YU., Arutyunov S.D., Ryahovskij A.N. Orthopedic dentistry: national guide. Moscow: GEOTAR-Media, 2016: 158 (In Russian).
4. Ryahovskij A.N. Digital dentistry. Moscow: Avantis LLC. 2010: 106—112 (In Russian).
5. SHustova V.A., SHustov M.A. Application of 3D technologies in orthopedic dentistry. Saint Petersburg: Spetslit, 2016: 8—44 (In Russian).
6. Chen Hu, Wang Han, Peijun Lv, Wang Yong, Sun Yuchun. Quantitative Evaluation of Tissue Surface Adaption of CAD-Designed and 3D Printed Wax Pattern of Maxillary Complete Denture. Hindawi Publishing Corporation BioMed Research International. 2015, Article ID 453968, 5 pages http://dx.doi.org/10.1155/2015/453968.
7. Dawood A., Sauret-Jackson V., Marti B., Darwood A. 3D printing in dentistry. Br. Dent J. 2015, 219(11): 521—529. doi: 10.1038 / sj.bdj.2015.914
8. Flugge T., Schlager S., Nelson K., Nahles S., Metzger M.C. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. American Journal of Orthodontics and Dentofacial Orthopedics. 2013, 144(3): 471—478. doi: 10.1016 / j.ajodo.2013.04.017
9. Goodacre B.J., Goodacre C.J., Baba N.Z., Kattadiyil M.T. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J Prosthet Dent. 2016, 116: 249—256.doi:10.1016/j.prosdent.2016.02.017
10. Kim T., Varjo F., Duarte S. Esthetic Rehabilitation of an Edentulous Arch Using a Fully Digital Approach. Quintessence of Dental Technology. 2018, 1: 227—236.
11. Mendonca A.F., Mendonca M.F., White G.S., Sara G., Littlefair D. Total CAD/CAM Supported Method for Manufacturing Removable Complete Dentures [Electronic resource]. Case Reports in Dentistry. 2016, Mode of access: https://www.hindawi.com/journals/crid/2016/1259581/. doi:10.1155/2016/1259581
12. Oberoi G., Nitsch S., Edelmayer M., Janjic K., Muller A.S., Agis H. 3D Printing—Encompassing the Facets of Dentistry. Front Bioeng Biotechnol. 2018, 6: 172. doi: 10.3389 / fbioe.2018.00172
13. Patzelt S., Lamprinos C., Stampf S., Att W. The time efficiency of intraoral scanners: an in vitro comparative study. J Am Dent Assoc. 2014, 145(6): 542—551.doi:10.14219/jada.2014.23
14. Patzelt S., Emmanouilidi A., Stampf S., Strub J. R., Att W. Accuracy of full-arch scans using intraoral scanners. Clin Oral Investig. 2014, 18(6): 1687—1694. doi: 10.1007 / s00784-013-1132-у
15. Unkovskiy A., Wahl E., Zander A.T., Huettig F. Intraoral scanning to fabricate complete dentures with functional borders: a proof-of-concept case report. BMC Oral Health. 2019, 13, 19(1): 46. doi:10.1186/s12903-019-0733-5