Received 26.01.2022
DOI: 10.35556/idr-2022-1(98)12-20
Carbon dioxide sterilization in critical/subcritical condition as an alternative to modern methods of eradication of bacteria, fungi and viruses on medical items (literature review)

Yanushevich O.O., Tsarev V.N., ORCID 0000-0002-3311-0367 RSCI: AuthorID: 638394 SPIN code: 8180-4941, Arutyunov S.D., ORCID 0000-0001-6512-8724, Korsunsky A.M., ORCID 0000-0002-3558-5198, Salimon A.I., ORCID 0000-0002-9048-8083 RSCI: SPIN-code: 6336-5041, AuthorID: 30723, Podporin M.S., ORCID 0000-0003-1737-0887 RSCI: SPIN-code: 1937-4996, AuthorID: 819560, Romanenko I.I., ORCID 0000-0002-9634-4363
Federal State Budgetary Educational Institution of Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation

E-mail address: nikola777@rambler.ru

Summary
Infections associated with the provision of medical care (ISMP) are a global problem that require the close attention of medical and preventive institutions. Therefore, strict compliance with the anti-infective safety regime, as well as the development of decontamination methods, materials and medical devices are an urgent approach to minimizing the risk of nosocomial infections.
The purpose of the study is to provide an analytical assessment of the antimicrobial effectiveness of sterilization of medical materials and instruments with carbon dioxide in a supercritical and sub-supercritical state in comparison with other modern regulated methods of sterilization.
Materials and methods. A meta-analysis of 1027 publications identified 67 publications, which are presented and analyzed in this literature review.
Results and discussion. An updated review of experimental protocols based on supercritical sterilization and efficiency results sorted by strains of microorganisms and processed materials was carried out. The multidimensional effect of this sterilization method on microbial cells, spores, fungi and viruses is analyzed. Advantages and disadvantages in comparison with other sterilization technologies (autoclaving and its analogues, plasma sterilization, gamma rays) have been established conclusion.
Conclusion. The use of carbon dioxide in supercritical/sub-supercritical states is a promising method that ensures high reliability of sterilization and the safety of processing objects.

Keywards: sterilization, supercritical fluid; carbon dioxide; gamma irradiation, steam sterilization.

For citation: Arutyunov S.D., Yanushevich O.O., Korsunsky A.M., Podporin M.S., Salimon А.I., Romanenko I.I., Tsarev V.N. Carbon dioxide sterilization in critical/subcritical condition as an alternative to modern methods of eradication of bacteria, fungi and viruses on medical items (literature review). Stomatology for All / Int. Dental Review. 2022, no.1(98): 12-20 (In Russian). doi: 10.35556/idr-2022-1(98)12-20

References
1. Qiu Q-Q., Leamy P., Brittingham P. et al. Inactivation of bacterial spores and viruses in biological material using supercritical carbon dioxide with sterilant. J Biomedical Materials Research. Part B. Applied Biomaterials. 2009, 91(2): 572—578.
2. Qiu Q-Q., Sun W-Q., Connor J. Sterilization of biomaterials of synthetic and biological origin. Comprehensive Biomaterials. 2011, 4: 127—144.
3. Fraser D. Bursting bacteria by release of gas pressure. Nature. 1951, 167: 33—38.
4. Ribero N., Soares G.C., Santos-Rosales V., Concheiro A., Alvarez-Lorenzo C., Garsia Gonzales C.A., Olivera A.L. A new era for sterilization based on supercritical CO2 technology. J. Biomed Mater Res. 2019: 1—30. https://doi.org/10.1002/jbm.b.34398
5. Farkas J. Irradiation as a method for decontaminating food. A review. Int J Food Microbiol. 1998, 44: 189—204.
6. Spilimbergo S., Bertucco A. Non-thermal bacterial inactivation with dense CO2. Biotechnol Bioeng. 2003, Dec, 20, 84(6): 627—638. doi: 10.1002/bit.10783
7. Ishikawa H., Shimoda M., Tamaya K., Yonekura A., Kawano T., Osajima Y. Inactivation of Bacillus spores by the supercritical carbon dioxide micro-bubble method. Biosci Biotechnol Biochem. 1997, Jun, 61(6): 1022—1023. doi:10.1271/bbb.61.1022
8. White A. Effective terminal sterilization using supercritical carbon dioxide. J Biotechnol. 2006, 123(4): 504—515.
9. Zhang J., Davis T.A., Matthews M.A., Drews M.J., LaBerge M., An Y.H. Sterilization using high-pressure carbon dioxide. J. of Supercritical Fluids. 2006, 38: 354—372. doi:10.1016/j.supflu.2005.05.005
10. Matuska A.M. McFetridge P.S. The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; implications for stem cell adhesion. J Biomed Mater Res B Appl Biomater. 2015, 103(2): 397—406.
11. Balestrini J.L., Liu A., Gard A.L., Huie J., Blatt K.M.S., Schwan J., Niklason L.E. Sterilization of Lung Matrices by Supercritical Carbon Dioxide. Tissue Engineering Part C: Methods. 2016, 22(3): 260—269. https://doi.org/10.1089/ten.tec.2015.0449
12. Parsons B. Sterilisation of drug–device combination products. Drug-Device Combination Products. 2010, 395—435.
13. Rakhmonova F.M. Dalimova Sh.K. The influence of hygienic oral care products on the composition of microflora. Bulletin of Science and Education. 2019; 9-3: 53—55 (In Russian).
Рахмонова Ф.М. Далимова Ш.К. Влияние гигиенических средств ухода за полостью рта на состав микрофлоры. Вестник науки и образования. 2019; 9-3: 53—55.
14. Chikina O.G., Mubarakshin T.F., Lokotkova A.I. Prospects for the application of the physical method of disinfection of medical waste. Medial. 2015, no.3(17): 29—31 (In Russian).
Чикина О.Г., Мубаракшин Т.Ф., Локоткова А.И. Перспективы применения физического метода обеззараживания медицинских отходов. Медиаль. 2015, №3(17): 29—31.
15. Pereverzeva E.V., Melnichuk V.I. Disinfection. Sterilization: Methodological recommendations. Minsk: BSMU, 2019, 16 p. (In Russian).
Переверзева Е.В., Мельничук В.И. Дезинфекция. Стерилизация: Методические рекомендации. Минск: БГМУ, 2019. 16 c.
16. Microbiology, virology, immunology of the oral cavity: textbook (V.N. Tsarev., Ed., 2nd ed., reprint. and add.) Moscow: GEOTAR-Media, 2019, 720 p. (In Russian).
Микробиология, вирусология, иммунология полости рта: учебник (Под ред. В.Н. Царева. 2-е изд., перераб. и доп.) М.: ГЭОТАР-Медиа, 2019, 720 с.
17. Demidov P.A. Dry disposal technology in transportation and processing of reusable medical devices. Medical alphabet. Epidemiology and hygiene. Hospital. 2019, 32(407), №3: 45—49 (In Russian).
18. Haque M., Sartelli J., McKimm et al. Health care-associated infections — an overview. Infection and Drug Resistance. 2018, 11: 2321—2333.
19. Nyhsen C.M., Humphreys H., Koerner R.J. et al. Infection prevention and control in ultrasound — best practice recommendations from the European Society of Radiology Ultrasound Working Group. Insights Imaging. 2017, 8: 523—535.
20. Rutala W.A., Weber D.J. Guideline for disinfection and sterilization in healthcare facilities. Infection Control and Hospital Epidemiology. 2008, 18: 240—264.
21. Rutala W.A., Weber D.J. ERCP scopes: what can we do to prevent infections? Infect Control Hosp Epidemiol. 2015, 36(6): 643—648.
22. Rutala W.A., Weber D.J. Disinfection and Sterilization in Health Care Facilities: An Overview and Current Issues. Infect Dis Clin North Am. 2016, 30(3): 609—637.
23. Ofstead C.L., Wetzler H.P., Snyder A.K. Endoscope reprocessing methods: a prospective study on the impact of human factors and automation. Gastroenterol Nurs. 2010, 33: 304—311.
24. Willey J.M., Woolverton C.J., Sherwood L. Prescott’s Principles of Microbiology. 2008: 126—153.
25. Boyce J.M. Environmental contamination makes an important contribution to hospital infection. J Hosp Infect. 2007, 65: 50—54.
26. Shih C.C., Su Y.Y., Chen L.C. et al. Degradation of 316L stainless steel sternal wire by steam sterilization. Acta Biomaterialia. 2016, 6(6): 2322—2328.
27. Goldman M., Pruitt L. Comparison of the effects of gamma radiation and low temperature hydrogen peroxide gas plasma sterilization on the molecular structure, fatigue resistance, and wear behavior of UHMWPE. J biomedical materials research. 1998, 40(3): 378—384.
28. Ferrentino G., Balzan G., Dorigato S. et al. Effect of supercritical carbon dioxide pasteurization on natural microbiota, texture, and microstructure of fresh-cut coconut. J biomedical materials research. 2012, 77(5): E137—E143.
29. Huang Q., Dawson R.A., Pegg D.E. et al. Use of peracetic acid to sterilize human donor skin for production of acellular dermal matrices for clinical use. Wound Repair Regen. 2004, 12(3): 276—287.
30. Park R.M. Associations between exposure to ethylene oxide, job termination, and cause-specific mortality risk. Am J Ind Med. 2020, 63(7): 577—588.
31. Harrell C.R., Djonov V., Fellabaum C. et al. Risks of Using Sterilization by Gamma Radiation: The Other Side of the Coin. Int. J Medical Sciences. 2018, 15: 274—279.
32. Dai Z.J., Ronholm Y., Tian [et al.] Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J Tissue Engineering. 2016, 7: 1—13.
33. Misset B.A., Timsit J.F., Dumay M.F. et al. Continuous quality-improvement program reduces nosocomial infection rates in the ICU. Intensive Care Med. 2004, 30(3): 395—400.
34. Park R.M. Associations between exposure to ethylene oxide, job termination, and cause-specific mortality risk. Am J Ind Med. 2020, 63(7): 577—588.
35. Singh R., Singh D., Singh A. Radiation sterilization of tissue allografts: A review. World J Radiol. 2016, 8: 355—369.
36. Brinston R.M., Wilson B.K. Converting to gamma-radiation sterilization: an overview for medical device manufacturers. Med Device Technol. 1993, 4: 18—22.
37. Bennet, D., Harris, A. F., Lacombe, J., Brooks, C., Bionda, N., Strickland, A. D., Eisenhut, T., & Zenhausern, F. Evaluation of supercritical CO2 sterilization efficacy for sanitizing personal protective equipment from the coronavirus SARS-CoV-2. The Science of the total environment. 2021, 780: 146519. https://doi.org/10.1016/j.scitotenv.2021.146519
38. Budisa N., Schulze-Makuch D. Supercritical Carbon Dioxide and Its Potential as a Life-Sustaining Solvent in a Planetary. Life. 2014, 4: 331—340. doi: 10.3390/life4030331
39. Bernhardt A., Wehrl M., Paul B., Hochmuth T., Schumacher M., Schutz K., Gelinsky M. Improved Sterilization of Sensitive Biomaterials with Supercritical Carbon Dioxide at Low Temperature. PLoS ONE. 2015, 10(6): e0129205. doi: 10.1371/journal. pone.0129205
40. White A., Burns D., Tim W. Christensen Effective terminal sterilization using supercritical carbon dioxide. Journal of biotechnology. 2006, 123: 504—515. doi: 10.1016/j.jbiotec.2005.12.033
41. Efaq A.N., Ab. Rahman N.N., Nagao H., Al-Gheethi A.A., Shahadat Md., Ab. Kadir M.O. Supercritical Carbon Dioxide as Non-Thermal Alternative Technology for Safe Handling of Clinical. Environ. Process. 2015, 2: 797—822. doi 10.1007/s40710-015-0116-0
42. Erkmen O. Antimicrobial effect of pressurised carbon dioxide on Enterococcus faecalis in physiological saline and foods. Journal of the science of food and agriculture. 2000, 80(4): 465—470.
43. Ballestra, Louis Cuq Patricia & Jean. Influence of Pressurized Carbon Dioxide on the Thermal Inactivation of Bacterial and Fungal Spores. Lwt-Food Science and Technology.1998, 3: 184—188.
44. Dillow A.K., Dehghani F., Hrkach J.S., Foster N.R., Langer R. Bacterial inactivation by using near- and supercritical carbon dioxide. Proc Natl Acad Sci USA. 1999, Aug, 31, 96(18): 10344—10348. doi: 10.1073/pnas.96.18.10344
45. Erkmen O. Mathematical modeling of Escherichia coli inactivation under high-pressure carbon dioxide. J Biosci Bioeng. 2001, 92(1): 39—43. doi: 10.1263/jbb.92.39
46. Erkmen O. Effects of high-pressure carbon dioxide on Escherichia coli in nutrient broth and milk. Int J Food Microbiol. 2001, Apr, 11, 65(1—2): 131—135. doi: 10.1016/s0168-1605(00)00499-2
47. Karaman H., Erkmen O. High carbon dioxide pressure inactivation kinetics of Escherichia coli in broth. Food Microbiology. 2001, 18(1): 11—16.
48. Schmidt A., Beermann K., Bach E., Schollmeyer E. Disinfection of textile materials contaminated with E. coli in liquid carbon dioxide. J Cleaner Production. 2005, 13(9): 881—885.
49. Ishikawa H., Shimoda M., Shiratsuchi H., Osajima Y. Sterilization of microorganisms by the supercritical carbon dioxide micro-bubble method. Biosci Biotechnol Biochem. 1995, Oct, 59(10): 1949—1950. doi: 10.1271/bbb.59.1949
50. Shimoda M., Kago H., Kojima N., Miyake M., Osajima Y., Hayakawa I. Accelerated death kinetics of Aspergillus niger spores under high-pressure carbonation. Appl Environ Microbiol. 2002, Aug, 68(8): 4162—4167. doi: 10.1128/AEM.68.8.4162-4167.2002
51. Enomoto A., Nakamura K., Nagai K., Hashimoto T., Hakoda M. Inactivation of food microorganisms by high-pressure carbon dioxide treatment with or without explosive decompression. Biosci Biotechnol Biochem. 1997, Jul, 61(7): 1133—1137. doi: 10.1271/bbb.61.1133
52. Hon S.I., Pyun Y.R. Membrane damage and enzyme inactivation of Lactobacillus plantarum by high pressure CO2 treatment. Int J Food Microbiol. 2001, Jan, 22, 63(1—2): 19—28. doi: 10.1016/s0168-1605(00)00393-7
53. Ulmer H.M., Ganzle M.G., Vogel R.F. Effects of high pressure on survival and metabolic activity of Lactobacillus plantarum TMW1.460. Appl Environ Microbiol. 2000, Sep, 66(9): 3966—3973. doi: 10.1128/AEM.66.9.3966-3973.2000
54. Erkmen O. Effect of carbon dioxide pressure on Listeria monocytogenes in physiological saline and foods. Food Microbiology. 2000, 17(6): 589—596.
55. Erkmen O. Predictive modelling of Listeria monocytogenes inactivation under high pressure carbon dioxide. Lebensmittel-Wissenschaft und-Technologie. 2000, 33(7): 514—519.
56. Erkmen O. Kinetic Analysis of Listeia monocytogenes inactivation by high pressure carbon dioxide. J Food Engineering. 2001, 47(1): 7—10.
57. Erkmen O. Antimicrobial Effect of Pressurized Carbon Dioxide on Staphylococcus aureus in Broth and Milk. Lwt – Food Science and Technology. 1997, 30: 826—829.
58. Kamihira M., Masamichi et al. Sterilization of Microorganisms with Supercritical Carbon Dioxide. Agricultural and biological chemistry. 1987, 51: 407—412.
59. Wei C.I., Balaban M.O., Fernando S.Y., Peplow A.J.. Bacterial Effect of High-Pressure CO2 Treatment on Foods Spiked with Listeria or Salmonella. J Food Prot. 1991, Mar, 54(3): 189—193. doi: 10.4315/0362-028X-54.3.189
60. Erkmen O. Inactivation of Salmonella typhimurium by high pressure carbon dioxide. Food Microbiology. 2002, 17(2): 225—232.
61. Erkmen O., Karaman H. Kinetic studies on the high-pressure carbon dioxide inactivation of Salmonella typhimurium. J Food Engineering. 2001, 50(1): 25—28.
62. Erkmen O., Note. Antimicrobial effect of pressurized carbon dioxide on Yersinia enterocolitica in broth and foods. Food Science and Technology International. 2001, 7(3): 245—250.
63. Elvassore N., Sartorello S., Spilimbergo S., Bertucco A. Micro-organisms inactivation by supercritical CO2 in a semi-continuous process. Italian J Food Science. 2003, 15(1): 115—124.
64. Parton T., Rocchi E., Spilimbergo S., Elvassore N., Bertucco A. Sterilization of fruit juice by high pressure CO2, advances in high pressure bioscience and biotechnology II. Proceedings of the Second International Conference on High Pressure Bioscience and Biotechnology. 2003: 419—424.
65. Roskey C.T., Sikes A. Effect of Hyperbaric Carbon Dioxide on Spores and Vegetative Cells of Bacillus stearothermophilus. 1994, 38 p.
66. Sikes A., Martin C. Control of thermophilic spore activity with pressurized CO2 and egg-white lysozyme. Report, NATICK/TR-95/020. 23 p.
67. Baldini T., Caperton K., Hawkins M., McCarty E. Effect of a novel sterilization method on biomechanical properties of soft tissue allografts. Knee Surgery, Sports Traumatology, Arthroscopy. 2016, 24(12): 3971—3975. https://doi.org/10.1007/s00167-014-3221-0
68. Meyer M., Prade I., Leppchen-Frohlich K., Felix A., Herdegen V., Haseneder R., Repke J.U. Sterilisation of collagen materials using hydrogen peroxide doted supercritical carbon dioxide and its effects on the materials properties. Journal of Supercritical Fluids. 2015, 102: 32—39. https://doi.org/10.1016/j.supflu.2015.04.006
69. Michelino F., Zambon A., Vizzotto M.T., Cozzi S., Spilimbergo S. High power ultrasound combined with supercritical carbon dioxide for the drying and microbial inactivation of coriander. Journal of CO2 Utilization. 2018, 24: 516—521.
70. Scognamiglio F., Blanchy M., Borgogna M., Travan A., Donati I., Bosmans J.W.A.M., … Marsich E. Effects of supercritical carbon dioxide sterilization on polysaccharidic membranes for surgical applications. Carbohydrate Polymers. 2017, 173: 482—488. https://doi.org/ 10.1016/j.carbpol.2017.06.030
71. Paniagua-Martinez I., Mulet A., Garcia-Alvarado M.A., Benedito J. Ultrasound-assisted supercritical CO2 treatment in continuous regime: Application in Saccharomyces cerevisiae inactivation. Journal of Food Engineering. 2016, 181: 42—49.
72. Rao L., Bi X., Zhao F., Wu J., Hu X., Liao X. Effect of highpressure CO2 processing on bacterial spores. Critical Reviews in Food Science and Nutrition. 2016, 56(11): 1808—1825.
73. Russell N., Rives A., Pelletier M.H., Wang T., Walsh W.R. The effect of supercritical carbon dioxide sterilization on the anisotropy of bovine cortical bone. Cell and Tissue Banking. 2015, 16(1): 109—121. https://doi.org/10.1007/s10561-014-9447-8
74. Yavuz C., Oliaei S.N.B., Cetin B., Yesil-Celiktas O. Sterilization of PMMA microfluidic chips by various techniques and investigation of material characteristics. Journal of Supercritical Fluids. 2016, 107: 114—121. https://doi.org/10.1016/j.supflu.2015.08.019
75. Wehmeyer J.L., Natesan S., Christy R.J. Development of a sterile amniotic membrane tissue graft using supercritical carbon dioxide. Tissue Engineering Part C: Methods. 2015,. 21(7): 649—659. https://doi. org/10.1089/ten.tec.2014.0304

Яндекс.Метрика