DOI: 10.35556/idr-2019-2(87)48-53.
MULTILEVEL COMPOSITION OF THE ENAMEL APATITE OF HUMAN TEETH ( IN THE CONTEXT OF BIOMINERALOGY)
Katkova V.I., Golubev E.A.
Institut of geology, Komi Scientific Center, Ural Branch of the RAS, Syktyvkar, Russia
Summary
In this review paper, features of the hierarchical or-ganization of enamel elements of human teeth at macro, micro and submicron levels are shown. At the macro-structural level, the spherulite-zonal structure of the enamel apatite is due to the radial arrangement of prisms and semi-concentric bands (Retzius surfaces). For the first time, complex types of subordinate struc-tures of the structural order of subelements in enamel prisms have been established. The basic microstructural element of the enamel — prism can be represented in the form of a biocomposite composed of co-ordinated systems in the following sequence: globular nanoparti-cles → nanofibrils → subindivids → chain aggregates of subindivids → blocks → filamentary crystal (enamel prism). Unified structure-forming tendencies of the apa-tite enamel and of abiogenic natural mineral structures have been noted.
Keywords: enamel prism, apatite, structural ele-ments, crystal, subindivids.
For citation: Katkova V.I., Golubev E.A. Multilevel composition of the enamel apatite of human teeth (in the context of biomineralogy). Stomatology for All / Interna-tional Dental Review. 2019; 2 (87): 48—53 (in Russ.).
References
1. Borovskiy Ye.V., Leontyev V.K. Biology of the oral cavity. — Moscow: Medicine, 1991. — 340 p. (in Russ.).
2. Katkova V.I., Golubev Y.A. Examination of the dental tissue using an atomic force microscope. West. IG Komi SC UB RAS. — 2001. — no. 9. — P. 10—11 (in Russ.).
3. Katkova V.I. Stromatolite biomineralogy. — Yeka-terinburg, Ural Department of RAS, 2006. — 112 p. (in Russ.).
4. Patrikeyev V.K., Galyukova A.V. The structure of the enamel under electron microscope. Dentistry. — 1972. — Vol. 51. — no. 2. — P. 24—27 (in Russ.).
5. Shumilovich B.R., Vorobieva Yu.B., Malykhina I.E., Chertovskikh A.V. Modern view on the crystal structure of hydroxyapatite and the process of age-related chang-es in dental enamel (in vitro study). Journal of Anatomy and Histopathology. — 2015. — Vol. 4. — no. 1. — P. 77—86 (in Russ.).
6. Jones F.H. Theeth and bones: applications of sur-face science to dental materials and related biominerals. Surface Science Repots. — 2001. — V. 42. — P. 75—205.
7. Li C., Risnes S. SEM observations of Retzius lines and prism cross-striations in human dental enamel after different acid etching regimes. Archives of Oral Biology. — 2004. — V. 49. — P. 45—52.
8. Mahoney P. Incremental Enamel Development in Modern Human Deciduous Anterior Teeth. American Journal of Physical Anthropology. — 2012. — V. 147 (4). — P. 637—651.
9. Moriwaki Y., Aoba T., Tsutsumi S., Yamaga R. X-ray diffraction studies on the lattice imperfection of bio-logical apatites / J. Osaka Univ. Dental. School. — 1976. — N 16. — P. 33—45.
10. Robinson C, Connell S, Kirkham J., Shore R. Smith A. Dental enamel—a biological ceramic: regular substructures in enamel hydroxyapatite crystals re-vealed by atomic force microscopy. J. Mater. Chem. — 2004. — V. 14. — Р. 2242—2248.
11. Robinson C, Connell S. Crystal Initiation Struc-tures in Developing Enamel: Possible Implications for Caries Dissolution of Enamel Crystals. Frontiers in Physiology. — 2017. — V. 8. — P. 1—5.
12. Smith T.M. New evidence for the periodicity of Incremental structures in ename. Current Trends in Den-tal Morphology Research. Max Planck Institute for Evo-lutionary Anthropology. — 2005. — P. 445—456.
13. Smith T.M., Tafforeau P. New Visions of Dental Tissue Research: Tooth Development, Chemistry, and Structure. Evolutionary Anthropology. — 2008. — V. 17. — P. 213—226.
14. Sollobohmer O., May K.-P., Anders M. Forse mi-croscopical investigation of human teeth in liquds. Thin